A Reynolds semi-robust and pressure-robust Hybrid High-Order method for the solution of the incompressible Navier–Stokes equations on general meshes

Daniel Castanon Quiroz^{\dagger} and Daniele A. Di Pietro^{\ddagger}

[†]IIMAS-UNAM (National Autonomous University of Mexico), Mexico City, Mexico [‡]Institut Montpelliérain Alexander Grothendieck, Montpellier, France

> CFC 2025 Santiago de Chile, Chile

Outline

1 Motivation.

The Navier–Stokes problem. Two numerical robustness properties.

2 The Hybrid High Order (HHO) method in a nutshell

[Di Pietro, Ern, and Lemaire 2014] \rightarrow First introduced. [Di Pietro and Droniou 2020] \rightarrow An HHO Book with different Apps. [Cicuttin, Ern and Pignet 2021] \rightarrow An HHO Book with App. in Solid Mechanics.

3 HHO for incompressible Navier-Stokes eqs.

[CQ and Di Pietro 2020] → Pressure-robust Navier-Stokes formulation on simplicial meshes. [CQ and Di Pietro 2024] → Pressure-robust Navier-Stokes formulation on polytopal meshes.

[CQ and Di Pietro 2025] \rightarrow Semi Re-robust and pressure-robust Navier-Stokes formulation on polytopal meshes.

The Time-Dependent Incompresible NS-Problem

- Let Ω ⊂ ℝ^d, d ∈ {2, 3}, be an open, bounded, simply connected polyhedral domain with Lipschitz boundary ∂Ω.
- Letting $\mathbf{U} := \mathbf{H}_0^1(\Omega)$ and $P := L_0^2(\Omega)$, we consider the following: Find $\mathbf{u} : [0, t_F] \to \mathbf{U}$ and $p : (0, t_F] \to P$ with $\mathbf{u}(0) = \mathbf{u}_0 \in \mathbf{U}$, such that it holds, for all $(\mathbf{v}, q) \in \mathbf{U} \times P$ and almost every $t \in (0, t_F)$,

 $(\partial_t \mathbf{u}(t), \mathbf{v}) + \nu a(\mathbf{u}(t), \mathbf{v}) + t(\mathbf{u}(t), \mathbf{u}(t), \mathbf{v}) + b(\mathbf{v}, p(t)) - b(\mathbf{u}(t), q) = \ell(\mathbf{f}(t), \mathbf{v}), (1.1)$

with (\cdot, \cdot) denoting the standard $L^2(\Omega)$ -product, $\nu > 0$ is the fluid viscosity, and

$$\begin{split} a(\mathbf{w},\mathbf{v}) &\coloneqq \int_{\Omega} \nabla \mathbf{w} : \nabla \mathbf{v}, \quad b(\mathbf{v},q) \coloneqq -\int_{\Omega} (\nabla \cdot \mathbf{v})q, \quad \ell(\mathbf{f},\mathbf{v}) \coloneqq \int_{\Omega} \mathbf{f} \cdot \mathbf{v}, \\ t(\mathbf{w},\mathbf{v},\mathbf{z}) &\coloneqq \int_{\Omega} ((\mathbf{w} \cdot \nabla)\mathbf{v}) \cdot \mathbf{z}. \end{split}$$

Motivation: Robust Numerical Methods

 We call a numerical method "pressure-robust" ([Linke 2014]) if the discretisation error of the velocity is "independent of the pressure", i.e.,

$$\|\mathbf{u}_h-\mathbf{u}\|_{\mathbf{L}^2(\Omega)} \leq Ch^r \|\mathbf{u}\|_{\mathbf{H}^s(\Omega)},$$

where \mathbf{u}_h is the approximation of the solution \mathbf{u} , *h* is the mesh size, *C* is a constant independent of the pressure *p*, and *r*, *s* are positive integers.

• We call a numerical method "Reynolds semi-robust" ([Schroeder *et. al.* 2018]) if the discretisation error of the velocity is "independent of the Reynolds number or ν^{-1} ",

Motivation: Pressure Robustness

Previous work in pressure robust-methods for the NST problem:

- "A new Variational Crime". See [Linke 2014].
- Traditional conformal Taylor-Hood finite elements $(V_h \subset \mathbf{H}_0^1(\Omega))$ over simplicial meshes are not pressure robust. See [Linke and Merdon 2016].
- For the transient Navier–Stokes problem, the material derivative

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$$

is close to a gradient for important applications as $v \rightarrow 0$. See [Gauger *et. al. 2019*].

Motivation: Semi-Re Robustness

Previous work in Semi-Re robust methods for the time-dependent NST problem:

- It is standard to assume additional regularity condition on $\nabla \mathbf{u}$.
- In [Burman and Fernández 2007] using continuous interior penalty FEM and assuming u ∈ L[∞](0, t_F; W^{1,∞}(Ω)) a velocity error estimate in the L[∞](0, t_F; L²(Ω))-norm was obtained.
- The best known velocity error estimate in the $L^{\infty}(0, t_{\rm F}; \mathbf{L}^2(\Omega))$ -norm is of order $h^{k+\frac{1}{2}}$ (where *k* denotes the order of the polynomial approximation and *h* is the mesh size). See for instance [Han and Hou 2021] (**Hdiv** FEs), and [Beirão da Veiga *et. al.* 2023] (Scott-Vogelius FEs).
- ** A new semi-robust scheme with hybrid velocity and hybrid pressure: Talk of T. Radley.
- All the previous work regarding semi-Re robust methods for the time dependent NST problem only cover simplicial meshes.

The Goal

Going back to the time-dependent Navier-Stokes weak problem:

Objective

To design an discretization method on **general meshes** for the Navier-Stokes problem such that the velocity error estimates are **independent** of the pressure and of ν^{-1} . In addition, we want to match the best known velocity error in the $L^{\infty}(0, t_F; \mathbf{L}^2(\Omega))$ -norm which is of order $h^{k+\frac{1}{2}}$.

Motivation: Polytopal Meshes

• Motivation: Discretisation of Ω to Ω_h .

HHO in a Nutshell

The standard HHO in a nutshell

- The standard HHO method attaches discrete unknowns to the mesh faces.
 - one polynomial of order $k \ge 0$ on each mesh face.
- HHO standard methods also use cell unknowns:
 - one polynomial of order $k \ge 0$ on each mesh cell.
 - HHO methods are skeletal methods.

Ex: Degrees of Freedom (DOFs) for the scalar case using the standard HHO with hexagonal cells.

The HHO Space

The HHO Space

• Let a polynomial degree $k \ge 0$ be fixed. We define the global space of discrete velocity unknowns:

$$\underline{\mathbf{U}}_{h}^{k} \coloneqq \{ \underline{\mathbf{v}}_{h} = ((\mathbf{v}_{T})_{T \in \mathcal{T}_{h}}, (\mathbf{v}_{F})_{F \in \mathcal{T}_{h}}) : \mathbf{v}_{T} \in \mathcal{P}^{k^{*}}(T) \quad \forall T \in \mathcal{T}_{h}, \\
\text{and} \quad \underline{\mathbf{v}}_{F} \in \mathcal{P}^{k}(F) \quad \forall F \in \mathcal{F}_{h} \},$$

where

$$k^* \coloneqq \begin{cases} k & \text{if } k \in \{0, 1\}, \\ k+1 & \text{otherwise.} \end{cases}$$

• We define the global interpolation operator $\underline{\mathbf{I}}_{h}^{k}: \mathbf{H}^{1}(\Omega) \to \underline{\mathbf{U}}_{h}^{k}$ such that,

$$\underline{\mathbf{I}}_{h}^{k}\mathbf{v} \coloneqq ((\boldsymbol{\pi}_{T}^{k^{*}}\mathbf{v}_{|T})_{T\in\mathcal{T}_{h}}, (\boldsymbol{\pi}_{F}^{k}\mathbf{v}_{|F})_{F\in\mathcal{T}_{h}}) \qquad \forall \mathbf{v} \in \mathbf{H}^{1}(\Omega),$$

where $\pi_T^{k^*}$, and π_F^k are the L^2 -orthogonal projectors over cells and faces, respectively.

The HHO Space

The HHO Space

• We furnish $\underline{\mathbf{U}}_{h}^{k}$ with the discrete H^{1} -like seminorm such that, for all $\underline{\mathbf{v}}_{h} \in \underline{\mathbf{U}}_{h}^{k}$,

$$\|\underline{\mathbf{v}}_{h}\|_{1,h} \coloneqq \left(\sum_{T \in \mathcal{T}_{h}} \|\underline{\mathbf{v}}_{T}\|_{1,T}^{2}\right)^{\frac{1}{2}},$$

where, for all $T \in \mathcal{T}_h$,

$$\|\underline{\mathbf{v}}_{T}\|_{\mathbf{1},T}^{2} \coloneqq \|\nabla \mathbf{v}_{T}\|_{\mathbf{L}^{2}(T)}^{2} + \sum_{F \in \mathcal{F}_{T}} h_{F}^{-1} \|\mathbf{v}_{F} - \mathbf{v}_{T}\|_{\mathbf{L}^{2}(F)}^{2}.$$

• The global spaces of discrete unknowns for the velocity and the pressure, respectively accounting for the wall boundary condition and the zero-average condition, are

$$\begin{split} \underline{\mathbf{U}}_{h,0}^{k} \coloneqq \left\{ \underline{\mathbf{v}}_{h} = \left((\mathbf{v}_{T})_{T \in \mathcal{T}_{h}}, (\mathbf{v}_{F})_{F \in \mathcal{T}_{h}} \right) \in \underline{\mathbf{U}}_{h}^{k} : \mathbf{v}_{F} = 0 \quad \forall F \in \mathcal{F}_{h}^{\mathsf{b}} \right\}, \\ P_{h,0}^{k} \coloneqq \mathbb{P}^{k}(\mathcal{T}_{h}) \cap L_{0}^{2}(\Omega). \end{split}$$

Local Pressure-Velocity Coupling

Local Pressure-Velocity Coupling

• Let an element $T \in \mathcal{T}_h$ be fixed. We define the discrete divergence operator $D_T^k : \underline{\mathbf{U}}_T^k \to \mathcal{P}^k(T)$ as follows: For a given local collection of velocities $\underline{\mathbf{v}}_T \in \underline{\mathbf{U}}_T^k, D_T^k \underline{\mathbf{v}}_T$ is such that, for all $q \in \mathcal{P}^k(T)$,

$$\int_{T} D_{T}^{k} \underline{\mathbf{v}}_{T} q = \int_{T} (\nabla \cdot \mathbf{v}_{T}) q + \sum_{F \in \mathcal{F}_{T}} \int_{F} (\mathbf{v}_{F} - \mathbf{v}_{T}) \cdot \mathbf{n}_{TF} q.$$
(2.1a)

• Critically, the operator D_T^k satisfies the commutating property

$$D_T^k \mathbf{\underline{I}}_T^k \mathbf{v} = \pi_T^k (\nabla \cdot \mathbf{v}) \qquad \forall \mathbf{v} \in \mathbf{H}^1(T).$$
(2.2)

Local Pressure-Velocity Coupling

Local Pressure-Velocity Coupling

• For the pressure-velocity coupling, we define the bilinear form $b_h : \underline{U}_{h,0}^k \times P_{h,0}^k(\mathcal{T}_h) \to \mathbb{R}$ such that

$$b_h(\underline{\mathbf{v}}_h, q_h) \coloneqq \sum_{T \in \mathcal{T}_h} \int_T -(D_T^k \underline{\mathbf{v}}_h) q_h.$$

• *Stability*. It holds, for all $q \in P_{h,0}^k(\mathcal{T}_h)$,

$$\|q\|_{L^{2}(\Omega)} \lesssim \sup_{\underline{\mathbf{v}}_{T} \in \underline{U}_{h,0}^{k}, \|\underline{\mathbf{v}}_{h}\|_{1,h} = 1} b_{h}(\underline{\mathbf{v}}_{h}, q_{h}).$$
(2.3)

Local Pressure-Velocity Coupling

Pressure-Robustness

• For the weak Stokes problem: Find $(\mathbf{u}, p) \in \mathbf{H}_0^1(\Omega) \times L_0^2(\Omega)$ such that

$$\begin{aligned} & \nu a(\mathbf{u},\mathbf{v}) + b(\mathbf{v},p) = \ell(\mathbf{f},\mathbf{v}) \quad \forall \mathbf{v} \in \mathbf{H}_0^1(\Omega), \\ & -b(\mathbf{u},q) = 0 \qquad \forall q \in L^2(\Omega). \end{aligned}$$

• To make it pressure robust we need to approximate $\ell(\mathbf{f}, \mathbf{v})$ by $\ell_h : \mathbf{L}^2(\Omega) \times \underline{\mathbf{U}}_h^k \to \mathbb{R}$ the bilinear form such that,

$$\ell_h(\mathbf{f}, \underline{\mathbf{v}}_h) \coloneqq \sum_{T \in \mathcal{T}_h} \int_T \mathbf{f} \cdot \mathbf{R}_T^k \underline{\mathbf{v}}_T,$$

where $\mathbf{R}_T^k : \underline{\mathbf{U}}_T^k \to \text{is a conformal subspace of } \mathbf{H}_{\text{div}}(T)$.

- See [Di Pietro, Ern, Linke, and Schieweck 2016] → HHO robust method for the Stokes problem using simplicial meshes.
- Need to extend the above method on polytopal meshes.

Velocity Reconstruction in $H_{div}(T)$

- Let an element $T \in \mathcal{T}_h$ be fixed¹, and let \mathfrak{T}_T a regular simplicial subdivision of T. For $\tau \in \mathfrak{T}_T$, let $\mathbb{RTN}^k(\tau)$ the local Raviart–Thomas–Nédélec space of degree k.
- Restrictions on \mathfrak{T}_T :

• All simplices in \mathfrak{T}_T must have at least one common vertex denoted as \mathbf{x}_T . Two examples of submeshes \mathfrak{T}_T in \mathbb{R}^2 that satisfy the assumptions above:

Figure: Pyramidal sub.

Figure: Non-pyramidal sub.

- We denote as τ a simplicial element which belongs to \mathfrak{T}_T , and as σ a face of τ .
- The simplicial subdivision \mathfrak{T}_T , is used to construct local operators for each mesh element *T*, and will not modify the final size of the global system.

¹We assume T is star-shaped with respect to a ball.

Velocity Reconstruction in $H_{div}(T)$

• We introduce the following spaces generated by the Koszul operator ([Di Pietro and Droniou 2021]):

$$\begin{split} \boldsymbol{\mathcal{G}}^{\mathsf{c},k}(T) &\coloneqq (\mathbf{x} - \mathbf{x}_T) \times \boldsymbol{\mathcal{P}}^{k-1}(T) \qquad \text{for } k \ge 1, \\ \boldsymbol{\mathcal{G}}^{\mathsf{c},k}(\mathfrak{T}_T) &\coloneqq (\mathbf{x} - \mathbf{x}_T) \times \boldsymbol{\mathcal{P}}^{k-1}(\mathfrak{T}_T) \qquad \text{for } k \ge 1, \end{split}$$

and define $\mathcal{G}^{c,-1}(T) := \mathcal{G}^{c,0}(T) := \{0\}$, and $\mathcal{G}^{c,-1}(\mathfrak{T}_T) := \mathcal{G}^{c,0}(\mathfrak{T}_T) := \{0\}$

• Defining $\mathcal{G}^{k}(T) \coloneqq \nabla \mathcal{P}^{k+1}(T)$, and $\mathcal{G}^{k}(\mathfrak{T}_{T}) \coloneqq \nabla \mathcal{P}^{k+1}(\mathfrak{T}_{T})$, we have the decomposition:

$$\mathcal{P}^{k}(T) = \mathcal{G}^{k}(T) \oplus \mathcal{G}^{c,k}(T), \qquad (2.5)$$

$$\mathcal{P}^{k}(\mathfrak{T}_{T}) = \mathcal{G}^{k}(\mathfrak{T}_{T}) \oplus \mathcal{G}^{c,k}(\mathfrak{T}_{T}), \qquad (2.6)$$

where the direct sums above are not orthogonal in general.

• Observe we have the following crucial properties:

 $\mathcal{G}^{c,k}(T) \subset \mathcal{G}^{c,k}(\mathfrak{T}_T) \text{ and } \mathcal{G}^k(T) \subset \mathcal{G}^k(\mathfrak{T}_T).$

Velocity Reconstruction in $H_{div}(T)$

• We define the local velocity reconstruction operator $\mathbf{R}_T^k : \underline{\mathbf{U}}_T^k \to \mathbb{RTN}^k(\mathfrak{T}_T)$ as the first component of the solution of the following discrete local problem: Given $\underline{\mathbf{v}}_T \in \underline{\mathbf{U}}_T^k$, find $(\mathbf{R}_T^k \underline{\mathbf{v}}_T, \psi, \theta) \in \mathbb{RTN}^k(\mathfrak{T}_T) \times \mathcal{P}^k(\mathfrak{T}_T) \times \mathcal{G}^{c,k-1}(\mathfrak{T}_T)$ such that

$$\mathbf{R}_{T}^{k} \underline{\mathbf{v}}_{T} \cdot \mathbf{n}_{\sigma} = (\mathbf{v}_{F} \cdot \mathbf{n}_{TF})|_{\sigma} \qquad \forall \sigma \in \mathfrak{F}_{F}, \forall F \in \mathcal{F}_{T},$$
(2.7a)

$$\int_{T} (\nabla \cdot \mathbf{R}_{T}^{k} \underline{\mathbf{v}}_{T}) \phi = \int_{T} (D_{T}^{k} \underline{\mathbf{v}}_{T}) \phi \qquad \forall \phi \in \mathcal{P}^{k}(\mathfrak{T}_{T}), \qquad (2.7b)$$

$$\int_{T} \mathbf{R}_{T}^{k} \underline{\mathbf{v}}_{T} \cdot \boldsymbol{\xi} = \int_{T} \mathbf{v}_{T} \cdot \boldsymbol{\xi} \qquad \forall \boldsymbol{\xi} \in \boldsymbol{\mathcal{G}}^{c,k-1}(\boldsymbol{\mathfrak{T}}_{T}), \quad (2.7c)$$

$$\int_{T} \mathbf{R}_{T}^{k} \underline{\mathbf{v}}_{T} \cdot \boldsymbol{w} + \int_{T} (\nabla \cdot \boldsymbol{w}) \psi + \int_{T} \boldsymbol{w} \cdot \boldsymbol{\theta} = \int_{T} \mathbf{v}_{T} \cdot \boldsymbol{w} \qquad \forall \boldsymbol{w} \in \mathbb{RTN}_{0}^{k}(\mathfrak{T}_{T}).$$
(2.7d)

where \mathcal{F}_T are the faces of T, \mathfrak{F}_F the subdivision of F, and $\mathbb{RTN}_0^k(\mathfrak{T}_T)$ is the subspace of $\mathbb{RTN}^k(\mathfrak{T}_T)$ with vanishes $\forall F \in \mathcal{F}_T$.

Velocity Reconstruction in $H_{div}(T)$

Lemma (Properties of \mathbf{R}_{T}^{k}) [CQ and Di Pietro 2025]

The operator \mathbf{R}_T^k has the following properties:

Well-posedness and boundedness. For a given $\underline{\mathbf{v}}_T \in \underline{\mathbf{U}}_T^k$, there exists a unique element $\mathbf{R}_T^k \underline{\mathbf{v}}_T \in \mathbb{RTN}^k(\mathfrak{T}_T)$ that satisfies problem (2.7), and it holds that

$$\|\mathbf{v}_T - \mathbf{R}_T^k \underline{\mathbf{v}}_T\|_{\mathbf{L}^2(T)} \leq h_T \|\underline{\mathbf{v}}_T\|_{1,T}.$$
(2.8)

(a) Approximation in $\mathbf{W}^{m,p}$. Let an integer $p \in [1, \infty]$ be given. Then, for all $s \in \{1, \ldots, k+1\}, m \in \{0, 1\}$, and all $\mathbf{v} \in \mathbf{W}^{s,p}(T)$, it holds

$$|\mathbf{v} - \mathbf{R}_T^k(\underline{\mathbf{I}}_T^k \mathbf{v})|_{\mathbf{W}^{m,p}(\mathfrak{T}_T)} \leq h_T^{s-m} |\mathbf{v}|_{\mathbf{W}^{s,p}(T)}.$$
(2.9)

Consistency. For a given $\underline{\mathbf{v}}_T \in \underline{\mathbf{U}}_T^k$, it holds, for $k \ge 1$,

$$\boldsymbol{\pi}_T^{k-1}(\mathbf{R}_T^k \underline{\mathbf{v}}_T) = \boldsymbol{\pi}_T^{k-1}(\mathbf{v}_T).$$
(2.10)

Navier-Stokes Problem

Reynolds Semi-Robustness for the Navier-Stokes problem

• When doing the standard convergence analysis for the Navier-Stokes problem, on discretizing the convective term $t(\mathbf{u}, \mathbf{u}, \mathbf{v}) := \int_{\Omega} ((\mathbf{u} \cdot \nabla)\mathbf{u}) \cdot \mathbf{v}$, we need to bound the following consistency term for each element *T* in the mesh:

$$\left| \int_{T} \left(\boldsymbol{\pi}_{T}^{0}(\mathbf{u}_{T}) \cdot \boldsymbol{\nabla} \right) \mathbf{R}_{T}^{k} \underline{\mathbf{e}}_{T} \cdot \left(\mathbf{R}_{T}^{k} \underline{\hat{\mathbf{u}}}_{T} - \mathbf{u} \right) \right|, \tag{3.1}$$

where $\underline{\mathbf{u}}_T$ is the discrete solution in T, $\underline{\mathbf{e}}_T \coloneqq \underline{\mathbf{u}}_T - \underline{\mathbf{I}}_T^k \mathbf{u}$, $\underline{\hat{\mathbf{u}}}_T \coloneqq \underline{\mathbf{I}}_T^k \mathbf{u}$, and \mathbf{u} is the solution of the abstract weak problem.

- When *T* is simplicial, we have $\mathbf{R}_T^k \mathbf{e}_T \in \mathcal{P}^k(T)$, and $(\boldsymbol{\pi}_T^0(\mathbf{u}_T) \cdot \nabla) \mathbf{R}_T^k \mathbf{e}_T \in \mathcal{P}^{k-1}(T)$ thus the integral above is zero, as noted first by [Han and Hou 2021].
- For the general case, i.e., *T* is a polytopal element, we have that $\mathbf{R}_T^k \mathbf{e}_T \in \mathcal{P}^k(\mathfrak{T}_T)$, and $(\pi_T^0(\mathbf{u}_T) \cdot \nabla) \mathbf{R}_T^k \mathbf{e}_T \in \mathcal{P}^{k-1}(\mathfrak{T}_T)$, thus the integral (3.1) is not zero.

Navier-Stokes Problem

Convective Discretization

**To overcome the previous issue, we will introduce a penalty term, but first let us recall:

• The spaces generated by the Koszul operator ([Di Pietro and Droniou 2021]):

$$\begin{split} \boldsymbol{\mathcal{G}}^{c,k-1}(T) &\coloneqq (\mathbf{x} - \mathbf{x}_T) \times \boldsymbol{\mathcal{P}}^{k-2}(T) & \text{ for } k \geq 2, \\ \boldsymbol{\mathcal{G}}^{c,k-1}(\mathfrak{T}_T) &\coloneqq (\mathbf{x} - \mathbf{x}_T) \times \boldsymbol{\mathcal{P}}^{k-2}(\mathfrak{T}_T) & \text{ for } k \geq 2, \end{split}$$

and define $\mathcal{G}^{c,-1}(T) := \mathcal{G}^{c,0}(T) := \{0\}$, and $\mathcal{G}^{c,-1}(\mathfrak{T}_T) := \mathcal{G}^{c,0}(\mathfrak{T}_T) := \{0\}$

• Defining $\mathcal{G}^{k-1}(T) \coloneqq \nabla \mathcal{P}^k(T)$, and $\mathcal{G}^{k-1}(\mathfrak{T}_T) \coloneqq \nabla \mathcal{P}^k(\mathfrak{T}_T)$, we have the decomposition:

$$\boldsymbol{\mathcal{P}}^{k-1}(T) = \boldsymbol{\mathcal{G}}^{k-1}(T) \oplus \boldsymbol{\mathcal{G}}^{c,k-1}(T), \qquad (3.2)$$

$$\boldsymbol{\mathcal{P}}^{k-1}(\mathfrak{T}_T) = \boldsymbol{\mathcal{G}}^{k-1}(\mathfrak{T}_T) \oplus \boldsymbol{\mathcal{G}}^{c,k-1}(\mathfrak{T}_T), \qquad (3.3)$$

where the direct sums above are not orthogonal in general.

• Observe we have the following crucial properties:

 $\mathcal{G}^{c,k-1}(T) \subset \mathcal{G}^{c,k-1}(\mathfrak{T}_T) \text{ and } \mathcal{G}^{k-1}(T) \subset \mathcal{G}^{k-1}(\mathfrak{T}_T).$

Navier-Stokes Problem

Convective Discretization

- For $\mathcal{G}^{c,k}(\mathfrak{T}_T)$ and $\mathcal{G}^k(\mathfrak{T}_T)$, we introduce their L^2 -orthogonal projectors, denoted as $\pi_{\mathcal{G},\mathfrak{X}_T}^{c,k}$, and $\pi_{\mathcal{G},\mathfrak{X}_T}^k$, respectively.
- For an element *T* in the mesh, we introduce, the potential operator $\varrho^{k}_{\mathfrak{T}_{T}} : \mathcal{P}^{k-1}(\mathfrak{T}_{T}) \to \mathcal{P}^{k}(\mathfrak{T}_{T})$ such that, for all $\mathbf{q} \in \mathcal{P}^{k-1}(\mathfrak{T}_{T})$,

$$\nabla \varrho_{\mathfrak{T}_{T}}^{k} \mathbf{q} = (\mathrm{Id} - \pi_{\mathcal{G},\mathfrak{T}_{T}}^{k-1} \pi_{\mathcal{G},\mathfrak{T}_{T}}^{c,k-1})^{-1} (\pi_{\mathcal{G},\mathfrak{T}_{T}}^{k-1} \mathbf{q} - \pi_{\mathcal{G},\mathfrak{T}_{T}}^{k-1} \pi_{\mathcal{G},\mathfrak{T}_{T}}^{c,k-1} \mathbf{q})$$

and $(\varrho_{\mathfrak{T}_{T}}^{k} \mathbf{q})_{|\tau} (\mathbf{x}_{T}) = 0$ for all $\tau \in \mathfrak{T}_{T}$, (3.4)

where Id is the identity operator, and we recall that \mathbf{x}_T is the common vertex of all simplices in \mathfrak{T}_T . For instance:

Figure: Pyramidal sub.

Figure: Non-pyramidal sub.

The Navier-Stokes Problem

Convective Discretization

• We now introduce the global trilinear form $t_h : [\underline{\mathbf{U}}_h^k]^3 \to \mathbb{R}$ such that, for all $(\underline{\mathbf{w}}_h, \underline{\mathbf{v}}_h, \underline{\mathbf{z}}_h) \in [\underline{\mathbf{U}}_h^k]^3$,

$$\begin{split} t_h(\underline{\mathbf{w}}_h,\underline{\mathbf{v}}_h,\underline{\mathbf{z}}_h) &\coloneqq \int_{\Omega} (\mathbf{R}_h^k \underline{\mathbf{w}}_h \cdot \nabla) \mathbf{R}_h^k \underline{\mathbf{v}}_h \cdot \mathbf{R}_h^k \underline{\mathbf{z}}_h - \sum_{\sigma \in \mathfrak{F}_h^k} \int_{\sigma} (\mathbf{R}_h^k \underline{\mathbf{w}}_h \cdot \mathbf{n}_{\sigma}) [\![\mathbf{R}_h^k \underline{\mathbf{v}}_h]\!]_{\sigma} \cdot \{\mathbf{R}_h^k \underline{\mathbf{z}}_h\}_{\sigma} \\ &+ \sum_{\sigma \in \mathfrak{F}_h^k} \int_{\sigma} \frac{1}{2} |\mathbf{R}_h^k \underline{\mathbf{w}}_h \cdot \mathbf{n}_{\sigma}| [\![\mathbf{R}_h^k \underline{\mathbf{v}}_h]\!]_{\sigma} \cdot [\![\mathbf{R}_h^k \underline{\mathbf{z}}_h]\!]_{\sigma} + \sum_{T \in \mathcal{T}_h} \sum_{\sigma \in \mathfrak{F}_T^k} t_{T,\sigma}^k (\underline{\mathbf{w}}_T, \underline{\mathbf{v}}_T, \underline{\mathbf{z}}_T). \end{split}$$

• The form $t_{T,\sigma}^k : \underline{U}_T^k \times \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ works as a penalty term and, setting $\mathbf{w}_T^0 := \pi_T^0 \mathbf{w}_T$, it is defined as follows:

$$\boldsymbol{t}_{T,\sigma}^{k}(\underline{\mathbf{w}}_{T},\underline{\mathbf{v}}_{T},\underline{\mathbf{z}}_{T}) \coloneqq \begin{cases} 0 & \text{if } k = 0, \\ \int_{\sigma} \left[\left[\boldsymbol{\varrho}_{\widehat{\boldsymbol{\mathfrak{X}}}_{T}}^{k} \boldsymbol{\pi}_{\widehat{\boldsymbol{\mathfrak{X}}}_{T}}^{k-1}((\mathbf{w}_{T}^{0} \cdot \nabla) \mathbf{R}_{T}^{k} \underline{\mathbf{v}}_{T}) \right] \right]_{\sigma} \left[\left[\boldsymbol{\varrho}_{\widehat{\boldsymbol{\mathfrak{X}}}_{T}}^{k} \boldsymbol{\pi}_{\widehat{\boldsymbol{\mathfrak{X}}}_{T}}^{k-1}((\mathbf{w}_{T}^{0} \cdot \nabla) \mathbf{R}_{T}^{k} \underline{\mathbf{z}}_{T}) \right] \right]_{\sigma} & \text{if } k \ge 1 \end{cases}$$

$$(3.5)$$

Notice that $t_{T,\sigma}^k$ is linear only in its second and third arguments.

The Navier-Stokes Problem

Convective Discretization

- Other similar penalty terms have been proposed in [Burman and Fernández 2007] and [Beirão da Veiga *et. al.* 2021].
- The proposed penalty term $t_{T,\sigma}^k$ is more subtle since, as we mentioned before, $\mathbf{R}_T^k \underline{\mathbf{e}}_T \in \mathcal{P}^k(\mathfrak{T}_T)$, but $\mathbf{R}_T^k \underline{\mathbf{e}}_T \notin \mathcal{P}^k(T)$.

The Navier-Stokes Problem

The Semi-Discrete Problem

- The HHO semi-discretization of the time-dependent Navier-Stokes problem then reads:
 - Find $\underline{\mathbf{u}}_h : [0, t_{\mathrm{F}}] \to \underline{\mathbf{U}}_{h,0}^k$ with $\underline{\mathbf{u}}_h(0) = \underline{\mathbf{I}}_h^k \mathbf{u}_0 \in \underline{\mathbf{U}}_{h,0}^k$, and $p_h : (0, t_{\mathrm{F}}] \to P_h^k$ such that it holds, for all $(\underline{\mathbf{v}}_h, q_h) \in \underline{\mathbf{U}}_{h,0}^k \times \mathcal{P}^k(\mathcal{T}_h)$ in $t \in (0, t_{\mathrm{F}})$,

$$a_{R,h}(\partial_{t}\underline{\mathbf{u}}_{h}(t),\underline{\mathbf{v}}_{h}) + \boldsymbol{\nu}a_{h}(\underline{\mathbf{u}}_{h}(t),\underline{\mathbf{v}}_{h}) + \boldsymbol{t}_{h}(\underline{\mathbf{u}}_{h}(t),\underline{\mathbf{u}}_{h}(t),\underline{\mathbf{v}}_{h}) + \boldsymbol{b}_{h}(\underline{\mathbf{v}}_{h},p_{h}(t)) \\ - \boldsymbol{b}_{h}(\underline{\mathbf{u}}_{h}(t),q_{h}) = \boldsymbol{\ell}_{h}(\mathbf{f}(t),\underline{\mathbf{v}}_{h}). \quad (3.6)$$

The Navier-Stokes Problem

Error Estimates

• We recall the velocity error as
$$\underline{\mathbf{e}}_h \coloneqq \underline{\mathbf{u}}_h - \underline{\hat{\mathbf{u}}}_h$$
, where $\underline{\hat{\mathbf{u}}}_h = \underline{\mathbf{I}}_h^k \mathbf{u}$.

Theorem (Velocity convergence rates) [CQ and Di Pietro 2025]

Assuming $\mathbf{u} \in L^{\infty}(\mathbf{H}^{k+1}(\mathcal{T}_{h})) \cap L^{2}(\mathbf{H}^{k+2}(\mathcal{T}_{h}))$ for $k \in \{0, 1\}, \mathbf{u} \in L^{\infty}(\mathbf{H}^{k+2}(\mathcal{T}_{h}))$ for k > 1, and $\partial_{t}\mathbf{u} \in L^{2}(\mathbf{H}^{k+1}(\mathcal{T}_{h}))$, it holds:

$$\begin{aligned} \|\underline{\mathbf{e}}_{h}\|_{L^{\infty}(0,t_{\mathrm{F}};\mathbf{L}^{2}(\Omega))}^{2} + \int_{0}^{t_{\mathrm{F}}} \left(\nu \|\underline{\mathbf{e}}_{h}\|_{1,h}^{2} + \frac{1}{2} \sum_{\sigma \in \mathfrak{F}_{h}^{i}} \int_{\sigma} |\mathbf{R}_{h}^{k}\underline{\mathbf{u}}_{h} \cdot \mathbf{n}_{\sigma}| \|[\mathbf{R}_{h}^{k}\underline{\mathbf{e}}_{h}]]_{\sigma} |^{2} \right) \\ \lesssim e^{G_{1}(\mathbf{u},t_{\mathrm{F}})} H_{1}(\mathbf{u},t_{\mathrm{F}}), \qquad (3.7) \end{aligned}$$

where $G_1(\mathbf{u}, t_F) \coloneqq t_F + \|\nabla \mathbf{u}\|_{L^1(\mathbf{L}^\infty)} + h\|\mathbf{u}\|_{L^1(\mathbf{L}^\infty)} + h(1 - \delta_{k\neq 0}) \|\nabla \mathbf{u}\|_{L^2(\mathbf{L}^\infty)}^2$ and

$$H_{1}(\mathbf{u}, t_{\mathrm{F}}) \coloneqq \nu h^{(2k+2)} \|\mathbf{u}\|_{L^{2}(\mathbf{H}^{k+2}(\mathcal{T}_{h}))}^{2} + h^{(2k+1)} \|\mathbf{u}\|_{L^{1}(\mathbf{W}^{1,\infty})} \|\mathbf{u}\|_{L^{\infty}(\mathbf{H}^{k+1}(\mathcal{T}_{h}))}^{2} + \dots$$

Numerical Tests

- Test taken from [de Frutos et. al. 2019] and [Han and Hou 2021].
- Domain $\Omega = (0, 1) \times (0, 1)$. BCs $\mathbf{u} = 0$ in all $\partial \Omega$.
- Smooth solutions $\mathbf{u}(\mathbf{x}, t)$ and $p(\mathbf{x}, t)$. We set the body force **f** accordingly.
- We set $t_F = 2$, $\Delta t = 10^{-3}$, and BDF2 (IMEX) scheme with $t_h(\underline{\mathbf{u}}_h^{n-1} 2\underline{\mathbf{u}}_h^{n-2}, \underline{\mathbf{u}}_h^n, \underline{\mathbf{v}}_h)$.
- We use polynomial degreee k = 1, and use different values for $v^{-1} = \{10^{-2}, 10^{-4}, 10^{-6}, 10^{-10}\}.$
- Using three different meshes:

(a) Cartesian.

(b) Hexagonal.

(c) Voronoi.

Meshes (coarser version).

Numerical Tests

N _{dof}	$\ \underline{\mathbf{e}}_h\ _{L^\infty(\mathbf{L}^2)}$	EOC	$\ \underline{\mathbf{e}}_h\ _{\sharp,\Delta t}$	EOC	$\ \underline{\mathbf{e}}_h\ _{L^\infty(\mathbf{L}^2)}$	EOC	$\ \underline{\mathbf{e}}_{h}\ _{\sharp,\Delta t}$	EOC
	Ca	Cartesian, $\nu = 10^{-4}$						
385	1.88E-01	-	2.58E-01	-	3.69E-01	-	2.09E-01	-
1620	2.64E-02	2.82	1.04E-01	1.30	7.21E-02	2.34	9.86E-02	1.08
6640	3.24E-03	3.04	3.74E-02	1.48	1.30E-02	2.48	3.87E-02	1.36
26880	3.95E-04	3.04	1.30E-02	1.53	2.25E-03	2.54	1.43E-02	1.43
108160	4.88E-05	3.02	4.36E-03	1.57	3.85E-04	2.54	5.17E-03	1.47
Cartesian, $\nu = 10^{-6}$				Cartesian, $\nu = 10^{-10}$				
385	3.72E-01	-	2.07E-01	-	3.72E-01	-	2.07E-01	-
1620	7.45E-02	2.31	9.82E-02	1.07	7.45E-02	2.31	9.82E-02	1.07
6640	1.51E-02	2.31	3.85E-02	1.35	1.51E-02	2.31	3.85E-02	1.35
26880	3.22E-03	2.23	1.43E-02	1.43	3.25E-03	2.22	1.43E-02	1.43
108160	6.85E-04	2.23	5.18E-03	1.46	7.16E-04	2.19	5.18E-03	1.46
bottomrule								

Table: Convergence rates for k = 1 using the Cartesian mesh for values of $\nu \in \{10^{-2}, 10^{-4}, 10^{-6}, 10^{-10}\}$.

The discrete L^2 -energy-upwind-norm of the velocity error is defined as follows

$$\|\underline{\mathbf{e}}_{h}\|_{\sharp,\Delta t}^{2} \coloneqq \Delta t \sum_{n=2}^{N_{h_{\mathrm{F}}}} \left(\nu \|\underline{\mathbf{e}}_{h}^{n}\|_{1,h}^{2} + \frac{1}{2} \sum_{\sigma \in \mathfrak{F}_{h}^{\mathrm{i}}} \int_{\sigma} |\mathbf{R}_{h}^{k}(2\underline{\mathbf{u}}_{h}^{n-1} - \underline{\mathbf{u}}_{h}^{n-2}) \cdot \mathbf{n}_{\sigma}| |\|\mathbf{R}_{h}^{k}\underline{\mathbf{e}}_{h}^{n}\|_{\sigma}|^{2} \right).$$

Numerical Tests

N _{dof}	$\ \underline{\mathbf{e}}_h\ _{L^\infty(\mathbf{L}^2)}$	EOC	$\ \underline{\mathbf{e}}_h\ _{\sharp,\Delta t}$	EOC	$\ \underline{\mathbf{e}}_h\ _{L^\infty(\mathbf{L}^2)}$	EOC	$\ \underline{\mathbf{e}}_h\ _{\sharp,\Delta t}$	EOC
	Hexagonal, $\nu = 10^{-2}$				Hexagonal, $\nu = 10^{-4}$			
386 1436 5560 21872	3.01E-01 5.68E-02 8.67E-03 1.14E-03	2.42 2.70 2.93	4.14E-01 1.88E-01 7.17E-02 2.54E-02	1.14 1.39 1.50	5.77E-01 1.48E-01 2.48E-02 3.48E-03	1.97 2.57 2.83	3.54E-01 1.79E-01 7.05E-02 2.57E-02	- 0.99 1.34 1.46
Hexagonal, $\nu = 10^{-6}$				Hexagonal, $\nu = 10^{-10}$				
386 1436 5560 21872	5.83E-01 1.51E-01 2.64E-02 4.25E-03	1.95 2.51 2.63	3.53E-01 1.79E-01 7.03E-02 2.56E-02	0.98 1.34 1.46	5.83E-01 1.51E-01 2.64E-02 4.27E-03	1.95 2.51 2.63	3.53E-01 1.79E-01 7.03E-02 2.56E-02	0.98 1.34 1.46

Table: Convergence rates for k = 1 using the Hexagonal mesh for values of $\nu \in \{10^{-2}, 10^{-4}, 10^{-6}, 10^{-10}\}$.

The discrete L^2 -energy-upwind-norm of the velocity error is defined as follows

$$\|\underline{\mathbf{e}}_{h}\|_{\boldsymbol{\mu},\Delta t}^{2} \coloneqq \Delta t \sum_{n=2}^{N_{l_{\mathrm{F}}}} \left(\boldsymbol{\nu} \|\underline{\mathbf{e}}_{h}^{n}\|_{1,h}^{2} + \frac{1}{2} \sum_{\sigma \in \mathfrak{F}_{h}^{\mathrm{i}}} \int_{\sigma} |\mathbf{R}_{h}^{k}(2\underline{\mathbf{u}}_{h}^{n-1} - \underline{\mathbf{u}}_{h}^{n-2}) \cdot \mathbf{n}_{\sigma}| |\|\mathbf{R}_{h}^{k}\underline{\mathbf{e}}_{h}^{n}\|_{\sigma}|^{2} \right).$$

Numerical Tests

N _{dof}	$\ \underline{\mathbf{e}}_h\ _{L^\infty(\mathbf{L}^2)}$	EOC	$\ \underline{\mathbf{e}}_h\ _{\sharp,\Delta t}$	EOC	$\ \underline{\mathbf{e}}_h\ _{L^\infty(\mathbf{L}^2)}$	EOC	$\ \underline{\mathbf{e}}_h\ _{\sharp,\Delta t}$	EOC	
	Voronoi, $\nu = 10^{-2}$				Voronoi, $\nu = 10^{-4}$				
276 1228 5136 21032	3.61E-01 5.11E-02 6.19E-03 7.60E-04		3.63E-01 1.61E-01 5.99E-02 2.11E-02	1.37 1.38 1.46	5.66E-01 1.15E-01 1.94E-02 3.01E-03	2.68 2.49 2.62	3.02E-01 1.49E-01 5.67E-02 2.02E-02	1.19 1.35 1.45	
Voronoi, $\nu = 10^{-6}$				Voronoi, $\nu = 10^{-10}$					
276 1228 5136 21032	5.70E-01 1.17E-01 2.05E-02 3.55E-03	 2.66 2.44 2.46	3.01E-01 1.48E-01 5.64E-02 2.00E-02	- 1.19 1.35 1.45	5.70E-01 1.17E-01 2.05E-02 3.56E-03	2.66 2.44 2.46	3.01E-01 1.48E-01 5.64E-02 2.00E-02	- 1.19 1.35 1.45	

Table: Convergence rates for k = 1 using the Voronoi mesh for values of $\nu \in \{10^{-2}, 10^{-4}, 10^{-6}, 10^{-10}\}$.

The discrete L^2 -energy-upwind-norm of the velocity error is defined as follows

$$\|\underline{\mathbf{e}}_{h}\|_{\boldsymbol{\mu},\Delta t}^{2} \coloneqq \Delta t \sum_{n=2}^{N_{l_{\mathrm{F}}}} \left(\boldsymbol{\nu} \|\underline{\mathbf{e}}_{h}^{n}\|_{1,h}^{2} + \frac{1}{2} \sum_{\sigma \in \mathfrak{F}_{h}^{\mathrm{i}}} \int_{\sigma} |\mathbf{R}_{h}^{k}(2\underline{\mathbf{u}}_{h}^{n-1} - \underline{\mathbf{u}}_{h}^{n-2}) \cdot \mathbf{n}_{\sigma}| |\|\mathbf{R}_{h}^{k}\underline{\mathbf{e}}_{h}^{n}\|_{\sigma}|^{2} \right).$$

Future Work

Work to be done to improve the present scheme:

- Be able to perform static condesation.
- Get rid of k^* (for $k \ge 2$) on cells, i.e., use only Polynomials of degree k in each cell.

Work to be done on Polytopal Meshes:

• Open problem for high order $k \ge 2$: be able to use a more flexible simplicial partition \mathfrak{T}_T for $T \in \mathcal{T}_h$, or not using any partition at all for the Navier-Stokes problem with traditional boundary conditions, i.e., $\mathbf{u} \in \mathbf{H}_0^1(\Omega)$.

Thank you for your attention!

References I

References

[Beirão da Veiga *et. al.* 2021] L. Beirão da Veiga, F. Dassi, and G. Vacca. *Vorticity-stabilized virtual elements for the Oseen equation*. Math. Models Methods Appl. Sci. 31.14 (2021).

[Beiräö da Veiga et. al. 2022] L. Beirão da Veiga, F. Dassi, D. A. Di Pietro, and J. Droniou Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes. Comput. Meth. Appl. Mech. Engrg., 2022, 397(115061).

[Beirão da Veiga et. al. 2023] L. Beirão da Veiga, F. Dassi, and G. Vacca Pressure robust SUPG-stabilized finite elements for the unsteady Navier–Stokes equation. IMA J. Numer. Anal. (May 2023).

[Burman and Fernández 2007] E. Burman and M. A. Fernández,

Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107 (2007), pp. 39–77.

[CQ and Di Pietro 2020] Castanon Quiroz, D., and Di Pietro, D. A.

A Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces.

Comput. Math. Appl.,79-9, 2020. https://doi.org/10.1016/j.camwa.2019.12.005

[CQ and Di Pietro 2024] Castanon Quiroz, D., and Di Pietro, D. A. A pressure-robust HHO method for the solution of the incompressible Navier-Stokes equations on general meshes.

IMA Journal of Numerical Analysis, Volume 44, Issue 1, January 2024. https://doi.org/10.1093/imanum/drad007

References II

[CQ and Di Pietro 2025] Castanon Quiroz, D., and Di Pietro, D. A.

A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier–Stokes equations on general meshes.

Computer Methods in Applied Mechanics and Engineering. Volume 436. March 2025.

[Cicuttin, Ern and Pignet 2021] Cicuttin, M., Ern, A., and Pignet, N. Hybrid high-order methods. A primer with application to solid mechanics. SpingerBriefs in Mathematics, 2021.

[Di Pietro and Droniou 2020] Di Pietro, D. A., and Droniou, J. The Hybrid High-Order Method for Polytopal Meshes - Design, Analysis and Applications. Number 19 in Modeline, Simulation and Applications Springer International Publishing, 2020.

[Di Pietro and Droniou 2021] Di Pietro, D. A., and Droniou, J. An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincare inequalities, and consistency. Found. Comput. Math. (2021).

[Di Pietro, Ern, Lemaire 2014] Di Pietro, D. A., Ern, A., and Lemaire, S. An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators. Computational Methods in Applied Mathematics, 2014.

[Di Pietro, Ern, Linke, and Schieweck 2016] Di Pietro, D. A., Ern, A., Linke, A., and Schieweck, F. A discontinuous skeletal method for the viscosity-dependent Stokes problem. Computer Methods in Applied Mechanics and Engineering, vol. 306, 2016.

References III

[de Frutos et. al. 2019] de Frutos, J., García-Archilla, B. and Novo, J.

Fully Discrete Approximations to the Time- Dependent Navier-Stokes Equations with a Projection Method in Time and Grad-Div Stabilization.

J. Sci. Comput. 80 (2019).

[Gauger et. al. 2019] Gauger, N.R., Linke, A. and Schroeder, P.W.

On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond.

SMAI Journal of Computational Mathematics. Volume 5 (2019), p. 89-129.

[Han and Hou 2021] Y. Han and Y. Hou.

Robust error analysis of H(div)-conforming DG method for the time-dependent incompressible Navier-Stokes equations.

J. Comput. Appl. Math. 390 (2021),

[Schroeder et. al. 2018] Schroeder, P.W., Lehrenfeld, C., Linke, A., and Lube, G.

Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations. SeMA Journal volume 75, pages629–653 (2018).