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Introduction

Outline

1 Motivation.

The Navier—Stokes problem.
Two numerical robustness properties.

2 The Hybrid High Order (HHO) method in a nutshell

[Di Pietro, Ern, and Lemaire 2014] — First introduced.

[Di Pietro and Droniou 2020] —An HHO Book with different Apps.
[Cicuttin, Ern and Pignet 2021]— An HHO Book with App. in Solid
Mechanics.

3 HHO for incompressible Navier-Stokes eqs.

[CQ and Di Pietro 2020] — Pressure-robust Navier-Stokes formulation on

simplicial meshes.
[CQ and Di Pietro 2024] — Pressure-robust Navier-Stokes formulation on

polytopal meshes.
[CQ and Di Pietro 2025] — Semi Re-robust and pressure-robust Navier-Stokes

formulation on polytopal meshes.
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Introduction

The Time-Dependent Incompresible NS-Problem

@ LetQ C Rd, d € {2,3}, be an open, bounded, simply connected polyhedral domain
with Lipschitz boundary 0.

@ Letting U = H(l) (Q) and P = L(Z)(Q), we consider the following: Find u : [0, #z] - U
and p : (0, tp] — P with u(0) = ug € U, such that it holds, for all (v,g) € Ux P and
almost every 7 € (0, 1p),

(Oru(t), v)+va(u(t), v)+t(u(r),u(t), v)+b(v,p(t))-b(u(s),q) = C(f(1),v), (1.1)

with (-, -) denoting the standard L2 (€)-product, v > 0 is the fluid viscosity, and
a(w,v) = / Vw: Vv, b(v,q) = —/(V-v)q, £(f,v) = / f-v,
Q Q Q

t(w,v,z) = /((w -V)v) - z.
Q
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Introduction

Motivation: Robust Numerical Methods

@ We call a numerical method "pressure-robust” ([Linke 2014]) if the discretisation error
of the velocity is "independent of the pressure", i.e.,

oy, ~ ullp gy < CH llullis o

where uy, is the approximation of the solution u, / is the mesh size, C is a constant
independent of the pressure p, and r, s are positive integers.

@ We call a numerical method "Reynolds semi-robust” ([Schroeder ez. al. 2018]) if the

discretisation error of the velocity is "independent of the Reynolds number or v=!",
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Introduction

Motivation: Pressure Robustness

Previous work in pressure robust-methods for the NST problem:
@ "A new Variational Crime". See [Linke 2014].

@ Traditional conformal Taylor-Hood finite elements (Vh c H(l) (Q)) over simplicial
meshes are not pressure robust. See [Linke and Merdon 2016].

@ For the transient Navier—Stokes problem, the material derivative

Diu-v
o1 +u u

is close to a gradient for important applications as v — 0.
See [Gauger et. al. 2019].
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Introduction

Motivation: Semi-Re Robustness

Previous work in Semi-Re robust methods for the time-dependent NST problem:

@ It is standard to assume additional regularity condition on Vu.

@ In [Burman and Ferndndez 2007] using continuous interior penalty FEM and
assuming u € L= (0, rp; W (Q)) a velocity error estimate in the
L (0, tp; L2 ())-norm was obtained.

@ The best known velocity error estimate in the L= (0, 7; L2 (Q))-norm is of order hk+%
(where k denotes the order of the polynomial approximation and 4 is the mesh size).
See for instance [Han and Hou 2021] (Hdiv FEs), and [Beirdo da Veiga ez. al. 2023]
(Scott-Vogelius FEs).

@ ** A new semi-robust scheme with hybrid velocity and hybrid pressure: Talk of T.
Radley.

@ All the previous work regarding semi-Re robust methods for the time dependent NST
problem only cover simplicial meshes.
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Introduction

The Goal

Going back to the time-dependent Navier—Stokes weak problem:

Objective

To design an discretization method on general meshes for the Navier-Stokes problem such
that the velocity error estimates are independent of the pressure and of v~!. In addition, we
want to match the best known velocity error in the L* (0, 7r; L? () )-norm which is of order

1
hk+7 .
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HHO Discretization

@ Motivation: Discretisation of Q to Q.
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HHO Discretization

HHO in a Nutshell

The standard HHO in a nutshell
@ The standard HHO method attaches discrete unknowns to the mesh faces.
@ one polynomial of order k£ > 0 on each mesh face.
@ HHO standard methods also use cell unknowns:
@ one polynomial of order k > 0 on each mesh cell.
@ HHO methods are skeletal methods.

k=0 k=1 k=2

Ex: Degrees of Freedom (DOFs) for the scalar case using the standard HHO with
hexagonal cells.
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HHO Discretization

The HHO Space

The HHO Space

@ Let a polynomial degree k > 0 be fixed. We define the global space of discrete
velocity unknowns:

Ul = {v, = ((vD)rer;» (VE)Fes;,) 1 vr € PX(T) VT € Ty,
and vy € PK(F) VF e 7},
where

o= k ifk € {0,1},
" lk+1 otherwise.

@ We define the global interpolation operator lﬁ ‘H' (Q) — Q’;l such that,
Ly = () Viprery. (Tpvip)per;,)  Yv e HY(Q),

where n{f , and JT/;‘ are the L2-orthogonal projectors over cells and faces, respectively.
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HHO Discretization

The HHO Space

The HHO Space

@ We furnish El;; with the discrete H'-like seminorm such that, for all v, € U];;’

1
2
. 2
vl s={ > vrlif 7]
TeTy,
where, forall T € 7},

2 ._ 2 -1 _ 2
v I 7 = N9VE g2 gy + D B Ve =V I -
Fefr

@ The global spaces of discrete unknowns for the velocity and the pressure, respectively

accounting for the wall boundary condition and the zero-average condition, are

U= {Xh = ((vDrer;» (VF)Fper;,) €Uk :vp=0 VF e T},’}
Py o =PH(Tp) N LE(Q).
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HHO Discretization

Local Pressure-Velocity Coupling

Local Pressure-Velocity Coupling

@ Letanelement T € 7}, be fixed. We define the discrete divergence operator
D/; : El} — PK(T) as follows:
For a given local collection of velocities v, € g’;, D!
q € PNT),

k

7V is such that, for all

/TD'%!Tq=/T(V‘VT)q+ > /F(vF—vT) -nzpq. (2.1a)

Fefr
@ Critically, the operator D’; satisfies the commutating property

Ditkv = zk(vv)  wv e HY(T). (2.2)
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HHO Discretization

Local Pressure-Velocity Coupling

Local Pressure-Velocity Coupling

@ For the pressure-velocity coupling, we define the bilinear form
by : Uk x PX (7)) — R such that

b (¥, an) = Z /T—(DI}!;,) qn-

TeT,
@ Stability. It holds, for all g € PX (7).

||4||L2(9) < sup by, (!h’ qn)- (2.3)
v7eUf o.lvlh 4=t
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HHO Discretization

Local Pressure-Velocity Coupling

Pressure-Robustness
@ For the weak Stokes problem: Find (u, p) € H(')(Q) X L(z) (Q) such that

va(u,v) +b(v,p) = ((f,v) Vv e H}(Q),
—b(u,q) =0 Vg € [*(Q).

@ To make it pressure robust we need to approximate £ (f, v) by &, : L2(€) x g’h‘ — R
the bilinear form such that,

oty =3, [1Ry,,

TeTy,

where Rl} : g’; — is a conformal subspace of Hg;y (7).

@ See [Di Pietro, Ern, Linke, and Schieweck 2016] — HHO robust method for the
Stokes problem using simplicial meshes.

@ Need to extend the above method on polytopal meshes.
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HHO Discretization

Velocity Reconstruction

Velocity Reconstruction in Hg;y (7))
@ Letanelement T € 7, be fixed!, and let T a regular simplicial subdivision of 7.
For 7 € T7, let RTNF(7) the local Raviart—Thomas—Nédélec space of degree k.
@ Restrictions on T7:
@ All simplices in T must have at least one common vertex denoted as Xr.

Two examples of submeshes T7 in R? that satisfy the assumptions above:

T

Figure: Pyramidal Figure:
sub. Non-pyramidal sub.

@ We denote as 7 a simplicial element which belongs to T7, and as o a face of 7.

@ The simplicial subdivision T, is used to construct local operators for each mesh
element 7', and will not modify the final size of the global system.

1We assume T is star-shaped with respect to a ball.
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HHO Discretization

Velocity Reconstruction

Velocity Reconstruction in Hg;y (7))

@ We introduce the following spaces generated by the Koszul operator ([Di Pietro and
Droniou 2021)):

GOK(T) = (x—x7) x P N(T)  fork >1,

GM(Tr) = (x—xp) x PN (I fork =1,

and define G~ (7) = 6°°(T) := {0}, and 6=~ (T1) = 6°°(Tr) = (0}

@ Defining GX(T) := VP*!(T), and G*(T7) = VP! (T7), we have the
decomposition:

PH(T) = 65(T) @ G°*(T), 2.5)
PH(Tr) = 65 (Tr) @ 655 (3r), (2.6)

where the direct sums above are not orthogonal in general.

@ Observe we have the following crucial properties:
G°K(T) ¢ 6% (Tr) and GM(T) € 6" (Tn).
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HHO Discretization

Velocity Reconstruction

Velocity Reconstruction in Hg;y (7))

@ We define the local velocity reconstruction operator R’; : g’; — RTNF(T7) as the
first component of the solution of the following discrete local problem:
Given v, € U, find (REv,, v, 0) € RTN (T7) x PX(Ty) x G“F'(T7) such that

Riv, ng = (Vr - n7p))or VYo € §r,VF € J7,

(2.72)
[orypo= [Whvne  voertan,  am)
/T Riv, ¢ = /T vr-§ VE € G5 N(Tr), (270

/RI;XT~m+/(V-w)w+/w~0=/vT~m vw € RTN (T7). (2.7d)
T T T T

where Fr are the faces of T, & the subdivision of F, and ]RTN’(; (Tr) is the subspace
of RTNF(Z7) with vanishes YF € Fr.
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HHO Discretization

locity Reconstruction

Velocity Reconstruction in Hg;y (7))

Lemma (Properties of R;) [CQ and Di Pietro 2025]

The operator Rl} has the following properties:

0]

Well-posedness and boundedness. For a given v;. € Q’}, there exists a unique element
R’;XT € RTNF(Z7) that satisfies problem (2.7), and it holds that

Ivr = Rsvyll2 ) S Arllvpllir 2.8)

Approximation in W"-P. Let an integer p € [1, oo] be given. Then, for all
se{l,....,k+1},me {0, 1}, and all v e W*?(T), it holds

|v— R;{w (!]}V) |an1,p<11 ) S h‘;-im |v |WS'1’(T) 5 2.9)
Consistency. For a given v, € Q’;, it holds, for k > 1,

a5 (Rvy) = 24! (vr). (2.10)
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Convective Discretization

Navier-Stokes Problem

Reynolds Semi-Robustness for the Navier-Stokes problem

@ When doing the standard convergence analysis for the Navier-Stokes problem, on
discretizing the convective term #(u, u, v) := /Q ((u - V)u) - v, we need to bound the
following consistency term for each element 7" in the mesh:

' /T (% (ur) - V)Rke, - (Rhd, —w), 3.1

where u; is the discrete solution in 7, e, := u; — ll}u, 0, = ll}u, and u is the solution
of the abstract weak problem.

@ When 7 is simplicial, we have R’}gT e PX(T), and (nfl),(uT) . V)RkTgT e PI(T)
thus the integral above is zero, as noted first by [Han and Hou 2021].

@ For the general case, i.e., T is a polytopal element, we have that R’}gT e PK(Ty), and
(ngﬂ(ur) . V)R/.;ng e P 1(Ty), thus the integral (3.1) is not zero.
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Convective Discretization

Navier-Stokes Problem

Convective Discretization
**To overcome the previous issue, we will introduce a penalty term, but first let us recall:

@ The spaces generated by the Koszul operator ([Di Pietro and Droniou 2021]):
GOFUT) = (x—xp) x PE2(T) fork > 2,

G (Tr) = (x—x7) x PF2(Tp) fork =2,

and define G~ (7) = 6°°(T) := {0}, and 6>~ (T1) = 6°°(Tr) = (0}

@ Defining G¥'(T) := VPX(T), and G 1 (T7) = VPX(T7), we have the
decomposition:

PN T = 64 1(T) @ 6541 (D), (3.2)
PN (T = 681 (3r) @ 694 (Tr), (3.3)

where the direct sums above are not orthogonal in general.

@ Observe we have the following crucial properties:
6<1(1) € 69 (Tr) and 641(7) < 641 (T7).
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Convective Discretization

Navier-Stokes Problem

Convective Discretization
@ For G%¥(Z7) and G¥(Tr), we introduce their L2-orthogonal projectors, denoted as
c.k k .
TG and & 6.5 respectively.

@ For an elemenet 7 in the mesh, we introduce, the potential operator
ok Pk1(Ty) - PH(Ir) such that, for all q € P¥1(Ty),
ck 1y-1 k—1 ck 1
V'Qir = (d 7rg 1T G, IT) (ﬂg 3477694 7g, ‘qu) (3.4)
and (QzTQ)IT(XT) =0forall T € I,

where Id is the identity operator, and we recall that x7 is the common vertex of all
simplices in Tr. For instance:

) . Figure:
Figure: Pyramidal .
Non-pyramidal
sub.
sub.
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Convective Discretization

The Navier-Stokes Problem

Convective Discretization

@ We now introduce the global trilinear form ¢, : [Q’;] 3 — R such that, for all

(W), ¥,2;) € [Hﬂ}’

0 (Wys ¥y ) = /Q (Riw, - V)RLy, -Rfz, - > f (Riw, -no) [Ryy, o - (Riz, )
o’Eﬁih o

+ Z / hwh n, |[Riy wlo - HR;,Z;,]]U"'Z Z tT o (Wr, Vo, 2p).

a'eﬁl TeT), ()'E(Yl

@ The form r’;, o g’} X g]} X g’} — R works as a penalty term and, setting

w(} = n(}wT, it is defined as follows:
0 ifk=0,

* (W, Voo, Z7) = . .

T.o \=0 210 2T {f [[ng k- 1((w VR ) o [[g,,I e ML) - VIR zp) o ifk > 1
(3.5)

Notice that t]} - is linear only in its second and third arguments.
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Convective Discretization

The Navier-Stokes Problem

Convective Discretization

@ Other similar penalty terms have been proposed in [Burman and Ferndndez 2007] and
[Beirdo da Veiga et. al. 2021].

@ The proposed penalty term t’; - is more subtle since, as we mentioned before,
Rbe, € PX(Tr), but Rke, ¢ PH(T).
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Convective Discretization

The Navier-Stokes Problem

The Semi-Discrete Problem

@ The HHO semi-discretization of the time-dependent Navier-Stokes problem then reads:

Findu,, : [0, r] — EZO with u, (0) = 1’;‘,“0 € g’;o and pj, : (0, tg] — P’h‘ such that it

holds, for all (v,,, ) € Uk \ x PX(T) int € (0, 1p),

ag ; (0rwy, (1), ¥,,) + vay (w, (1), ¥,) + 1, (W, (1), W, (1) ¥,,) + by (¥, p (£)
— by (w, (1), qn) = 6y (£(1), ¥,).  (3.6)
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Convective Discretization

e Navier-Stokes Problem

Error Estimates

. — ~ A _ 7k
@ We recall the velocity error as ¢, :=u, —0,, where @, =L, u.

Theorem (Velocity convergence rates) [CQ and Di Pietro 2025]

Assuming u € L® (H*1 (7)) n L2 (H*2(73)) for k € {0,1}, u € L® (H*2(73)) for k > 1,
and dyu € L2 (H*'(7y)), it holds:

g 1
2 2 k k 2
llenll o o, .LZ(Q))+/ (VIlghlll,h+5 E / [R,u;, -no||[R;e,] o )
>!F> 0 o

o—e‘&}l

< TR H (u ),  (B7)

where G (u, 1) = 5+ || Vull1 o) + a1 o) + (1 = Ss0) | Va2

2wy and

Hi (u, tg) :=vh**2) ||u])? + D a1 ey ]

2
12 (1k42(75)) Lok (7)) F
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Convective Discretization

Numerical Tests

Test taken from [de Frutos ez. al. 2019] and [Han and Hou 2021].

Domain Q = (0, 1) x (0, 1). BCs u =0 in all 9Q.

Smooth solutions u(x, 7) and p(x, r). We set the body force f accordingly.

We set 1 = 2, At = 1073, and BDF2 (IMEX) scheme with 7, (gZ‘l - 292‘2, w,v,).

We use polynomial degreee k = 1, and use different values for
v 1={1072,107*,107°, 10710},

Using three different meshes:

(a) Cartesian. (b) Hexagonal. (c) Voronoi.
Meshes (coarser version).
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Convective Discretization

Numerical Tests

Naot eyl BOC  lieyllya,  BOC | lleyleoqn,  EOC  llgylly,  EOC
Cartesian, v = 1072 ‘ Cartesian, v = 1074
385 1.88E-01 - 2.58E-01 - 3.69E-01 2.09E-01 -
1620 2.64E-02 2.82 1.04E-01 1.30 7.21E-02 234 9.86E-02 1.08
6640 3.24E-03 3.04 3.74E-02 1.48 1.30E-02 248 3.87E-02 1.36
26880 3.95E-04 3.04 1.30E-02 1.53 2.25E-03 2.54 1.43E-02 1.43
108160 4.88E-05 3.02 4.36E-03 1.57 3.85E-04 2.54 5.17E-03 1.47
Cartesian, v = 1070 Cartesian, v = 10710
385 3.72E-01 - 2.07E-01 - 3.72E-01 - 2.07E-01 -
1620 7.45E-02 2.31 9.82E-02 1.07 7.45E-02 231 9.82E-02 1.07
6640 1.51E-02 231 3.85E-02 1.35 1.51E-02 2.31 3.85E-02 1.35
26880 3.22E-03 223 1.43E-02 1.43 3.25E-03 222 1.43E-02 1.43
108160 6.85E-04 223 5.18E-03 1.46 7.16E-04 2.19 5.18E-03 1.46
bottomrule

Table: Convergence rates for k = 1 using the Cartesian mesh for values of v € {1072, 1074,107°, 10710}.

The discrete L2-energy-upwind-norm of the velocity error is defined as follows

NrF
1 _ _
leg 12, ::AtZ(VHEle]Z'h+§ Y [ R ) g R Lo ).
n=2 o-eﬁ';l 7
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Convective Discretization

Numerical Tests

Noot  lleglloo g2y EOC  ligyllgar  BOC | lieyllcogay  EOC gy llga  EOC
Hexagonal, v = 1072 ‘ Hexagonal, v = 1074
386 3.01E-01 - 4.14E-01 - 5.77E-01 - 3.54E-01 -
1436 5.68E-02 2.42 1.88E-01 1.14 1.48E-01 1.97 1.79E-01 0.99
5560 8.67E-03 2.70 7.17E-02 1.39 2.48E-02 2.57 7.05E-02 1.34
21872 1.14E-03 2.93 2.54E-02 1.50 3.48E-03 2.83 2.57E-02 1.46
Hexagonal, v = 107° Hexagonal, v = 10710
386 5.83E-01 - 3.53E-01 - 5.83E-01 - 3.53E-01 -
1436 1.51E-01 1.95 1.79E-01 0.98 1.51E-01 1.95 1.79E-01 0.98
5560 2.64E-02 2.51 7.03E-02 1.34 2.64E-02 251 7.03E-02 1.34
21872 4.25E-03 2.63 2.56E-02 1.46 4.27E-03 2.63 2.56E-02 1.46

Table: Convergence rates for k = 1 using the Hexagonal mesh for values of v € {1072,1074, 1076, 10710}

The discrete L2-energy-upwind-norm of the velocity error is defined as follows

NtF
1 _ —
llew 13, :=AtZ(VHSZ||12J,+§ > / IR} 2uy~! —ui?) g [ R} T o 1)
n=2 ‘Teﬁih T
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Convective Discretization

Numerical Tests

Noot  lleglloo g2y EOC  ligyllgar  BOC | lieyllcogay  EOC gy llga  EOC
Voronoi, v = 1072 ‘ Voronoi, v = 1074
276 3.61E-01 - 3.63E-01 - 5.66E-01 - 3.02E-01 -
1228 5.11E-02 3.29 1.61E-01 1.37 1.15E-01 2.68 1.49E-01 1.19
5136 6.19E-03 2.95 5.99E-02 1.38 1.94E-02 2.49 5.67E-02 1.35
21032 7.60E-04 2.94 2.11E-02 1.46 3.01E-03 2.62 2.02E-02 1.45
Voronoi, v = 107° Voronoi, v = 10710
276 5.70E-01 - 3.01E-01 - 5.70E-01 - 3.01E-01 -
1228 1.17E-01 2.66 1.48E-01 1.19 1.17E-01 2.66 1.48E-01 1.19
5136 2.05E-02 2.44 5.64E-02 1.35 2.05E-02 2.44 5.64E-02 1.35
21032 3.55E-03 2.46 2.00E-02 1.45 3.56E-03 2.46 2.00E-02 1.45

Table: Convergence rates for k = 1 using the Voronoi mesh for values of v € {1072, 1074, 1070, 10710},

The discrete L2-energy-upwind-norm of the velocity error is defined as follows

NtF
1 _ —
llew 13, :=AtZ(VHSZ||12J,+§ > / IR} 2uy~! —ui?) g [ R} T o 1)
n=2 ‘Teﬁih T
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Convective Discretization

Future Work

Work to be done to improve the present scheme:
@ Be able to perform static condesation.

@ Getrid of k* (for k > 2) on cells, i.e., use only Polynomials of degree k in each cell.

Work to be done on Polytopal Meshes:

@ Open problem for high order k > 2: be able to use a more flexible simplicial partition
I for T € T, or not using any partition at all for the Navier-Stokes problem with
traditional boundary conditions, i.e., u € H(l) (Q).
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Convective Discretization

Thank you

Thank you for your attention!
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Convective Discretization
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