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Introduction

Navier-Stokes Problem

Model: The Stationary Incompressible Navier-Stokes

@ LetQ c R3bean open, bounded, simply connected polyhedral domain with
Lipschitz boundary 0€2.

@ Given a body force f € LZ(Q)3. We consider the problem:
Find (u,p) € H}(Q)? x L2(L) such that
va(u,v) +1(u,u,v) +b(v,p) = ((f,v) Vv e H}(Q)*, (1.1a)
—b(u,q) =0 Vg € L*(Q), (1.1b)

where v > 0 is the fluid viscosity, and

a(w,v) ::/QVW:VV, b(v,q) ::—/Q(V-v)q, (£, v) ::/g;f~v,

t(w,v,z) = /(wa) XV-Z.
@ el
@ Here p is the so-called Bernoulli pressure, and p := pgin + %|u|2. UNIVERSITE
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Introduction

Motivation: Polytopal Meshes

@ First motivation: Discretisation of  to €.
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Introduction

Motivation: Polytopal Meshes

But why polyhedral?
@ Need a numerical scheme less sensitive to the mesh quality.
@ Reduce time to generate meshes by use of automatic meshing tools.

@ Handle complex geometries: distorted meshes are usual.

Bare bundle:
cut of a mesh

Courtesy of Jérdme Bonelle (EDF-Paris).
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Introduction

Navier-Stokes Problem

Model: The Stationary Incompressible Navier-Stokes

@ LetQ c R3bean open, bounded, simply connected polyhedral domain with
Lipschitz boundary 0€2.

@ Given a body force f € LZ(Q)3. We consider the problem:
Find (u,p) € H(Q)? x L2(L) such that
va(u,v) +1(u,u,v) +b(v,p) = L(£,v) Vv e H)(Q), (1.2a)
—b(u,q) =0 Vg € L*(Q), (1.2b)

where v > 0 is the fluid viscosity, and

a(w,v) = /QVW : Vv, b(v,q) = —/Q(Vv)q, ((f,v) = /g;f-v,

t(w,v,z) = /(wa) XV-Z.
Q el
@ Here p is the so-called Bernoulli pressure, and p = pyin + %|u|2. UNIVERSITE
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Introduction

Motivation: Velocity Invariance

Second Motivation: Velocity invariance
@ The domain Q being simply connected, we have the following (Helmholtz—)Hodge
decomposition of f € L2 (Q)3:
f=g+AVy, (1.3)
where g is the curl of an element that belongs to
Hy (curl; Q) = {v e L2(Q)3 : v.v=0o0n 69} with y.. denoting the tangent trace
operator on Q, A € R*, and ¢ € H' (Q) is such that HVwHLz(ms =1.

Proposition [CQ and Di Pietro 2020]

For f = g+ AV, the velocity solution u of the Navier-Stokes problem is independent of A (and
¥).

UNIVERSITE
COTED'AZUR

7/39

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes



Introduction

Motivation: Velocity Invariance

Proposition

For f = g + AV, the velocity solution u of the Navier-Stokes problem is independent of A (and ).

Proof
(2 Key remarks)

@ Velocity Invariance: For all v € Hé (Q)3,

E(f,v) =€(g+AVY, V) :f(g,v)+/ AVY - v
Q

~tev) - [ v+ )
Q Q
=0(g, V) +b(v, ).
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Introduction

otivation: Velocity Invariance

Proposition

For f = g + AV, the velocity solution u of the Navier-Stokes problem is independent of A (and ¢).

Proof
(2 Key remarks)

Proposition (Integration by parts) [CQ and Di Pietro 2020]

Let X denote a simply connected open polyhedral subset of Q. For all v, w, z € H' (X)3, it holds

t(w,v,2)x ::/(wa)><v~z:/va~z—/sz~v. (1.4)
X X X

@ Letue H(]) (Q)? be the weak solution of the Navier-Stokes problem, then using (1.4), we
get 7(u, u, u) = 0. Moreover, using the velocity invariance property, we get the estimate

-1
[ul g @3 =V CP”gHLZ(Q)}-

where Cp denotes a Poincaré constant in Q. O UNIVERSITE
COTE DAZUR
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Introduction

Motivation: Velocity Invariance

Usually, the invariance property

|u|H1(Q)3 < V_ICP”g”LZ(Q)S

is not conserved at the discrete level.

@ The discrete invariance property is equivalent to the numerical pressure-robustness
property.

@ We call a numerical method "pressure-robust” if the discretisation error of the velocity is
independent of the pressure, i.e.,

”uh - u”Hl (@3 < C”lr”u”Hs(pr

where uy, is the approximation of the solution u, /4 is the mesh size, C is a constant
independent of the pressure p, and r, s are positive integers.
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Introduction

Motivation: Pressure Robustness

Previous work in pressure robust-methods for the NST problem:
@ "A new Variational Crime". See [Linke 2014].
@ Traditional conformal Taylor-Hood finite elements (Vh c Hé (9)3) over simplicial
meshes are not pressure robust. See [Linke and Merdon 2016].

@ Important property for applications with long Coriolis force 2w X u).
See [Linke and Merdon 2016].

@ For the transient Navier-Stokes problem, the material derivative

%+u-Vu

is close to a gradient for some applications as v — 0.
See [Gauger, Gauger, Linke, and Schroeder 2019].
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Introduction

Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R2
@ Time dependent problem.
@ The initial condition is constructed such that:

@ The vorticity V X u is always constant.
© The field force is f = 0, and v = 1075.

@ Periodic boundary conditions.

@ Example taken from [Gauger, Gauger, Linke, and Schroeder 2019].

. -

A Lo NG RN oo
initiai vorticity

—

Initial condition: ug and its vorticity V X ug. UNI\/ERIS\TE
COTE DAZUR
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Introduction

Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R>

H(div)-DG, k=6

Vorticity Vxuat ¢ =0.
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Introduction

Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R>

H(div)-DG, k=6

Vorticity VX uats=1.5.
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Introduction

Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R>

H(div)-DG, k=6

Vorticity VX uat ¢ = 3.
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HHO Discretisation

The Goal

Going back to the stationary Navier-Stokes weak problem:

@ Recalling the Hodge decomposition f = g + AV, we have the project objective as
follows:

Objective

To design a numerical discretization high order method for the NST-problem such that the
velocity error estimates are independent of A using polytopal meshes.
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HHO Discretisation

HHO in a Nutshell

Hybrid High Order Method (HHO) in a nutshell
[Di Pietro, Ern and Lemaire 2014]
@ HHO methods attach discrete unknowns to mesh faces.
@ one polynomial of order k£ > 0 on each mesh face.
@ HHO methods also use cell unknowns

@ one polynomial of order k > 0 on each mesh cell
@ but they are eliminated by static condensation (local Schur complement).

k=0 k=1 k=2

Ex: Degrees of Freedom (DOFs) using HHO with hexagonal cells for scalar functions.

UNIVERSITE
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HHO Discretisation

HHO in a Nutshell.

HHO vs Discontinuous Galerkin (DG) [Reed and Hill 1973]
@ DG methods use cell unknowns,
@ where one polynomial of order k > 0 is used on each cell.

k=0 k=1 k=2

Ex: Degrees of Freedom (DOFs) using DG with hexagonal cells for scalar functions.
@ The size of the global linear system (for problems in 3D with diffusion) is:
@ 3 x #(cells) using DG.
@ /2 x #(faces) using HHO (after static condensation).

UNIVERSITE
COTED'AZUR

18/39

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes



HHO Discretisation

HHO in a Nutshell.

Related numerical methods
@ Low-order methods (k = 0)
@ Mimetic Finite Differences (MFD).
@ [Brezzi, Lipnikov, and Shashkov 2005].
@ Hybrid Finite Volumes (HFV).
@ [Eymard, Gallouét, and Herbin 2010].
@ High-order methods (k > 0)
@ Hybridizable DG (HDG).
@ [Cockburn, Gopalakrishnan, and Lazarov 2009].
@ Non-conforming Virtual Elements (nc-VEM).
@ [Lipnikov and Manzini 2014].
@ For details see the HHO books: [Di Pietro and Droniou 2020] and [Cicuttin et. al. 2021]
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HHO Discretisation

The HHO Space

The HHO Space [Di Pietro, Ern and Lemaire 2014]

@ Let a polynomial degree k > 0 be fixed. We define the global space of discrete velocity
unknowns:

U} = (v, = ((V)regys (VP)res) Ve € BX(T)? VT € 75,
and vp € PY(F)® VF e 7).

@ And for a fixed element T € 7y, the local space of discrete velocity unknowns is denoted
as follows

U} = {vy = ((v7). (VF)Fery) : v € BX(T)?,

and vp € PX(F)> VF € F7}.
@ We define the global interpolation operator I];, CH'Y(Q) - Q’;l such that,

Lv = ((@hvip)res. (Mhviprer,) v e HY(Q)Y,

where n’;, and n’; are the polynomial L2—0rth0g0na1 projectors for cells and and faces, UNNERS\TE

respectively. COTE DAZUR
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HHO Discretisation

The HHO Space

The HHO Space
@ We furnish g’; with the discrete H!-like seminorm such that, for all v, € g’}‘l,

1

vl = { D) vl 7|

TeT),

where, forall T € 7y,

2 . 2 —1 2
17 I 7 = 1V2 I s+ D 1 Ve = VeI -
Fefr

@ The global spaces of discrete unknowns for the velocity and the pressure, respectively
accounting for the wall boundary condition and the zero-average condition, are

Ufl 0" {v = ((vDre;» (VP)Fer,) € Uk:ivp=0 VFe 7—‘;‘[’} R
Py o =PH(Tp) N LG(Q).
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HHO Discretisation

Navier-Stokes Problem

Model: The Stationary Incompressible Navier-Stokes

@ Let Q c R3 be an open, bounded, simply connected polyhedral domain with Lipschitz
boundary 0.

@ Given a body force f € L?(Q)3. We consider the problem:
Find (u,p) € H} (Q)® x L2(Q) such that

va(u,v) +1(u,u,v) +b(v,p) = £(f,v) Vv € H}(Q)%, (2.1a)
—b(u,q) =0 Vg € L*(Q), (2.1b)

where v > 0 is the fluid viscosity, and

a(w,v) :=/QVW:VV, b(v,q) ::—/Q(Vv)q, £(f,v) ::/g;f~v,

t(w,v,z) = /(wa) XV-Z.
Q

@ Here p is the so-called Bernoulli pressure, and p = pgin + % [ul. E )
UNIVERSITE
@ All technical details are in [CQ and Di Pietro 2020]. COTE DAZUR
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HHO Discretisation

Velocity Reconstruction

Velocity Reconstruction for Simplicial Elements

@ Let an element simplical T € 7}, be fixed. We define the local velocity reconstruction
operator R; : Qkf — RTNK(T) such that, for all v € g’;,
/TRI}XT W= /TVT A vw € PFI(T)3, (2.2a)

RI;XT *N7F = VE - N7F VF € Fr. (2.2b)

@ A global velocity reconstruction R’; : g’;l 0= RTN (75,) is obtained patching the local
contributions.

@ The space RTN¥(7;) has a continuous normal trace over each F € 7.
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HHO Discretisation

HHO Discretization

Pressure-Velocity Coupling

@ For the pressure-velocity coupling, we define the bilinear form by, : Qﬁ o X P(7,) = R
such that '

bV a) = — /Q (VREY,) gh.

@ The bilinear form by, enjoys the following properties:
i) Consistency. It holds, for all v € H(l) (Q)3,

b(v, qn) =b(v.qn)  Van € PX(Tp). (2.3)
i) Stability. It holds, for all g, € Pk,

”qh”LZ(Q) < sup bh(yh’ qn)- (24)
!Izég];,,()s”!},“l,hzl
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HHO Discretisation

HHO Discretization

Right Hand Side Discretization
@ We define &, : L2(Q)3 x g’;t o — R the bilinear form such that,

(. vy) = /Q«ﬁ “Rfy,.

@ The bilinear /;, form has the following properties:
i) Velocity invariance. For the Hodge decomposition of f = g + AV, it holds

G, v,) = Gi(8+ AV, Y,) = 6i(g,v,) + by (v, Amfy) Yy, € Uf (.

iy Consistency. Forall ¢ € L2(Q)3 n H*(7;)3,
1€ (@ I ne S 7 1]k g3

where the linear form E¢ ;,(#; -) : Q’h‘ — R representing the consistency error is

such that
Een(P;vy) = Cn(@,v,) — €(, Vi) gg‘T"E/IEJRASZ‘JE
25/39
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HHO Discretisation

HHO Discretization

Convective Discretization

@ Usually when we perform the discretization error analysis, the discrete trilinear form
(-, -, -) should be constructed to approximate the quantity

6, ((Vxu) Xu,z,) = /Q(qu) Xu- R’;gh for z, € Qﬁ,o’ (2.5)
@ Recalling the integration by parts formula,
/(wa)xv-z:/va-z—/sz-v for w,zeH'(Q)3,
T T T
we can reformulate (2.5) as follows:

O ((VXw) X W, 2,) = Z /T(wa) ><w~R]}gT

TeT,
_ k k
= Z /T (wa ‘Ryzy — VWRZ, ~w) :
T€Tp UNIVERSITE
COTED'AZUR
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HHO Discretisation

HHO Discretization

Convective Discretization

@ Thus, we introduce the global trilinear form #, : g’; X Qﬁ X Q’;l — R such that

(W Vo Z) = D 17 (Wy Vo 27),
TeT,

where, forany T € 7, tr : Q’} X Q’} X Q’; — R is defined as
1 (W Yy 2p) = / G wyRE v, - Rizy — / 61" w,Rizy - Rfy;
T T

@ The operator G!I. : ng — P!(T)33 approximates the gradient operator V in the HHO
space. See [Botti, Di Pietro, and Droniou 2019] for details.
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HHO Discretisation

HHO Discretization

Convective Discretization

@ Nevertheless, in the practical implementation one does not need to compute the gradient
reconstruction operators G;Um) to evaluate #,. As a matter of fact, we have that

(W ¥ 2) = Z [/T YwrRyy, - Rz — '/T VwrR}z; 'RI;XT]

TeTy,

+ Z Z /(WF -wr) -Rbz, (R’}!T 'nTF)
7€y, Feyp Y F

_ Z Z /(WF —-wr) -RI}ZT (RI}ZT -nrp) .
Te7; Ferp U F

UNIVERSITE
COTED'AZUR
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HHO Discretisation

HHO Discretization

Convective Discretization

@ The trilinear form #, has the following properties:
i) Non-dissipativity. For all w,, v, € gi, it holds that

1h(Wy» ¥2 ¥) = 0.

i) Boundedness. There exists a real number C; > 0 independent of / (and, clearly,
also of v and ) such that, for all W, V.2, € I_J’,i,

[tn (W Yo ) | < Cllwy 1, n 119y o 112 11
iii) Consistency. Tt holds, for all w € H} (@)% n W 14(7;)3 and all z, € US,
”81,}1 (W; ) ”1,h,* < hk“ ”wllwl,4(Q)3 |wlwk+l,4(771)3 s

where the linear form &, j,(w; -) : Q’}‘L — Ris such that, for all z, € g’;t,

1Zy) = Vxw) xw,z,) — t,(FF'w, Fw, z,). .
En(Wiz,) = G,((Vxw) x W,2,) - 1, (Lw, Liw, z,) e
COTE DAZUR
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HHO Discretisation

O Discretization

The Discrete Problem
@ The HHO discretization of the Navier-Stokes problem then reads:
3 k kK cuch the
Find (u;,, py) € ghy() X Ph,() such that

vap (W, ¥p,) + 1 (W, W, ¥3) + by (Y ) = Gy (£, ¥;) - Yy, € Uy, (2.6a)
by (W, qp) =0 Vay € BX(7p). (2.6b)

Theorem (Convergence) [CQ and Di Pietro 2020]

Forf € L2(Q)3 with f = g + AV, and assuming that it exists @ € (0, 1) such that

llgll 2 )3 < Cav?. @7

Let (u,p) € H(]) (Q)3 x L(Z) (€) be a solution to the Navier-Stokes equations, and (y,, p,) € g’z X Pﬁ be a solution to the
HHO scheme (2.6). Then, it holds:

i kil g a1 -1
=l < 1= 00 (e g+ Wl gy oy

T .VERSITE
COTE DAZUR
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Numerical Tests

Numerical Test

Application test 2D: Lid-Driven Cavity
@ Domain: [0, 1] x [0, 1]. BCs: u = (1, 0) at the top, and u = 0 at the other boundaries.
@ Body force f = 0.
@ Using polynomial aproximation: k = 5. Reynolds number Re = v~
@ Implementation using the HHO library SpaFEDTe (C++, created by Lorenzo Botti.)
@ Left: Re = 1,000, and 32 x 32 grid. Right: Re =5, 000, 32 x 32 grid.
(The rectangular grid is divived by triangles)
- 2 i

UNIVERSITE
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Numerical Tests

Numerical Test

Application test 2D: Lid-Driven Cavity

@ Comparison with reference solution [Erturk, Corke, and Gok¢ol 2005] and [Ghia, Ghia,
and Shin 1982] for Re = 1, 000.

uy
-1 08 -0.6 -04-02 0 02 04 06 08 1

1 1
—k=1,64x64 T
—k=516x16 08
o Ghiaectal
08| + Erturketal 0.6
| 0.4
06| 0.2
fy 0 g
0.4 -0.2
—0.4
"
o2 -0.6
-0.8
0 -1
0 0.2 0.4 0.6 0.8 1
ESt .
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Numerical Tests

Numerical Test: Velocity Invariance

Application test 2D: Lid-Driven Cavity
To check the invariance property at the discete level:
@ We run the same test case for f = AV where ¢ = % 3 +yY).
@ Weusek=1andRe =1, 000.
@ Comparison against the HHO-numerical method for NST proposed in [Botti, Di Pietro

and Droniou 2019].
uy
-1 -0.8 -0.6-0.4-02 0 02 04 0.6 08 1
1 1
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0.4
0.6 0.2
£ 0 g
0.4 -0.2
-0.4
02 -0.6
-0.8
0 - - -1 UNIVERSITE
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Numerical Tests

Current Work

Extension to Polytopal Meshes: Main Idea
@ Letanelement T € 7, be fixed, and let T any regular simplical subdivison of 7.
@ We construct the new local velocity reconstruction operator R'} : QI‘T — RTNK(Z7)
solving local problems (small linear system over Tr).

@ [Kuznetsov and Repin 2003] -> To solve the classical Poisson problem using
mixed methods for the low order case k = 0.

@ [Frerichs and Merdon 2020]-> For arbritrary high order £ > 1 using the Virtual
Element Method to solve the Stokes eqs.

@ [CQ and Di Pietro 2022]-> Currently finishing the details for the Navier-Stokes eqs.
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Numerical Tests

Future Work

Future Work in HHO with velocity invariance robustness
@ Non-Stationary Navier-Stokes eqs.
@ L* uniform estimates of piecewise derivatives of the solution and the error.
@ Non-newtonian flows.
@ Extend the HHO-method proposed in [Botti, CQ, Di Pietro and Harnist 2020].

@ Parallelize the code using MPI/PETSC/METIS such to be used in 3D and in real
applications.

UNIVERSITE
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Numerical Tests

Thank you

Thank you for your attention!

This presentation is availabe at my website: danielcq-math.github.io
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