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Navier-Stokes Problem
Model: The Stationary Incompressible Navier-Stokes

Let Ω ⊂ R3 be an open, bounded, simply connected polyhedral domain with
Lipschitz boundary 𝜕Ω.

Given a body force f ∈ L2 (Ω)3. We consider the problem:
Find (u, p) ∈ H1

0 (Ω)
3 × L2

0 (Ω) such that

𝜈a(u, v) + t(u, u, v) + b(v, p) = ℓ(f, v) ∀v ∈ H1
0 (Ω)

3, (1.1a)

−b(u, q) = 0 ∀q ∈ L2 (Ω), (1.1b)

where 𝜈 > 0 is the fluid viscosity, and

a(w, v) ≔
∫
Ω

∇w : ∇v, b(v, q) ≔ −
∫
Ω

(∇·v)q, ℓ(f, v) ≔
∫
Ω

f · v,

t(w, v, z) ≔
∫
Ω

(∇×w) × v · z.

Here p is the so-called Bernoulli pressure, and p := pkin + 1
2 |u|

2.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes



4/35

Introduction
HHO Discretisation

Numerical Tests

Motivation: Polytopal Meshes

First motivation: Discretisation of Ω to Ωh.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes



5/35

Introduction
HHO Discretisation

Numerical Tests

Motivation: Polytopal Meshes

But why polyhedral?
Need a numerical scheme less sensitive to the mesh quality.

Reduce time to generate meshes by use of automatic meshing tools.

Handle complex geometries: distorted meshes are usual.

Courtesy of Jérôme Bonelle (EDF-Paris).
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Navier-Stokes Problem
Model: The Stationary Incompressible Navier-Stokes

Let Ω ⊂ R3 be an open, bounded, simply connected polyhedral domain with
Lipschitz boundary 𝜕Ω.

Given a body force f ∈ L2 (Ω)3. We consider the problem:
Find (u, p) ∈ H1

0 (Ω)
3 × L2

0 (Ω) such that

𝜈a(u, v) + t(u, u, v) + b(v, p) = ℓ(f, v) ∀v ∈ H1
0 (Ω)3, (1.2a)

−b(u, q) = 0 ∀q ∈ L2 (Ω), (1.2b)

where 𝜈 > 0 is the fluid viscosity, and

a(w, v) ≔
∫
Ω

∇w : ∇v, b(v, q) ≔ −
∫
Ω

(∇·v)q, ℓ(f, v) ≔
∫
Ω

f · v,

t(w, v, z) ≔
∫
Ω

(∇×w) × v · z.

Here p is the so-called Bernoulli pressure, and p = pkin + 1
2 |u|

2.
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Motivation: Velocity Invariance

Second Motivation: Velocity invariance
The domain Ω being simply connected, we have the following (Helmholtz–)Hodge
decomposition of f ∈ L2 (Ω)3:

f = g + 𝜆∇𝜓, (1.3)

where g is the curl of an element that belongs to
H0 (curl;Ω) ≔

{
v ∈ L2 (Ω)3 : 𝜸𝝉v = 0 on 𝜕Ω

}
with 𝜸𝝉 denoting the tangent trace

operator on 𝜕Ω, 𝜆 ∈ R+, and 𝜓 ∈ H1 (Ω) is such that ‖∇𝜓 ‖L2 (Ω)3 = 1.

Proposition [CQ and Di Pietro 2020]

For f = g + 𝜆∇𝜓, the velocity solution u of the Navier-Stokes problem is independent of 𝜆 (and
𝜓).

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Motivation: Velocity Invariance

Proposition

For f = g + 𝜆∇𝜓, the velocity solution u of the Navier-Stokes problem is independent of 𝜆 (and 𝜓).

Proof
(2 Key remarks)

Velocity Invariance: For all v ∈ H1
0 (Ω)

3,

ℓ (f, v) = ℓ (g + 𝜆∇𝜓, v) = ℓ (g, v) +
∫
Ω

𝜆∇𝜓 · v

= ℓ (g, v) −
∫
Ω

𝜆𝜓 (∇·v) +
������
∫
𝜕Ω

𝜆𝜓 (v · nΩ)

= ℓ (g, v) + b(v, 𝜆𝜓) .

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Motivation: Velocity Invariance

Proposition

For f = g + 𝜆∇𝜓, the velocity solution u of the Navier-Stokes problem is independent of 𝜆 (and 𝜓).

Proof
(2 Key remarks)

Proposition (Integration by parts) [CQ and Di Pietro 2020]

Let X denote a simply connected open polyhedral subset of Ω. For all v, w, z ∈ H1 (X)3, it holds

t(w, v, z)X :=
∫

X
(∇×w) × v · z =

∫
X
∇wv · z −

∫
X
∇wz · v. (1.4)

Let u ∈ H1
0 (Ω)

3 be the weak solution of the Navier-Stokes problem, then using (1.4), we
get t(u, u, u) = 0. Moreover, using the velocity invariance property, we get the estimate

|u |H1 (Ω)3 ≤ 𝜈−1CP ‖g‖L2 (Ω)3 .

where CP denotes a Poincaré constant in Ω. �

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Motivation: Velocity Invariance

Usually, the invariance property

|u |H1 (Ω)3 ≤ 𝜈−1CP ‖g‖L2 (Ω)3

is not conserved at the discrete level.
The discrete invariance property is equivalent to the numerical pressure-robustness
property.
We call a numerical method "pressure-robust" if the discretisation error of the velocity is
independent of the pressure, i.e.,

‖uh − u‖H1 (Ω)3 ≤ Chr ‖u‖Hs (Ω)3 ,

where uh is the approximation of the solution u, h is the mesh size, C is a constant
independent of the pressure p, and r, s are positive integers.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Motivation: Pressure Robustness

Previous work in pressure robust-methods for the NST problem:
"A new Variational Crime". See [Linke 2014].
Traditional Taylor-Hood FEM over simplical meshes are not pressure robust.
See [Linke and Merdon 2016].
Important property for applications with long Coriolis force (2𝜔 × u) .
See [Linke and Merdon 2016].
For the transient Navier-Stokes problem, the material derivative

𝜕u
𝜕t

+ u · ∇u

is close to a gradient for some applications as 𝜈 → 0.
See [Gauger, Gauger, Linke, and Schroeder 2019].
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The Goal

Recalling the Hodge decomposition f = g + 𝜆∇𝜓, we have the project objective as
follows:

Objective

To design a numerical discretization high order method for the NST-problem such that the
velocity error estimates are independent of 𝜆 using polytopal meshes.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO in a Nutshell

Hybrid High Order Method (HHO) in a nutshell
[Di Pietro, Ern and Lemaire 2014]

HHO methods attach discrete unknowns to mesh faces.
one polynomial of order k ≥ 0 on each mesh face.

HHO methods also use cell unknowns
one polynomial of order k ≥ 0 on each mesh cell
but they are eliminated by static condensation (local Schur complement).

Ex: Degrees of Freedom (DOFs) using HHO with hexagonal cells for scalar functions.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO in a Nutshell.

HHO vs Discontinuous Galerkin (DG) [Reed and Hill 1973]
DG methods use cell unknowns,
where one polynomial of order k ≥ 0 is used on each cell.

Ex: Degrees of Freedom (DOFs) using DG with hexagonal cells for scalar functions.
The size of the global linear system (for problems in 3D with diffusion) is:

k3 × #(cells) using DG.
k2 × #(faces) using HHO (after static condensation).

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO in a Nutshell.

Related numerical methods
Low-order methods (k = 0)

Mimetic Finite Differences (MFD).
[Brezzi, Lipnikov, and Shashkov 2005].

Hybrid Finite Volumes (HFV).
[Eymard, Gallouët, and Herbin 2010].

High-order methods (k > 0)
Hybridizable DG (HDG).

[Cockburn, Gopalakrishnan, and Lazarov 2009].
Non-conforming Virtual Elements (nc-VEM).

[Lipnikov and Manzini 2014].
For details see the HHO Book [Di Pietro and Droniou 2020]

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes



16/35

Introduction
HHO Discretisation

Numerical Tests

The HHO Space
The HHO Space [Di Pietro, Ern and Lemaire 2014]

Let a polynomial degree k ≥ 0 be fixed. We define the global space of discrete velocity
unknowns:

Uk
h ≔ {vh = ( (vT )T∈Th , (vF)F∈Fh ) : vT ∈ Pk (T)3 ∀T ∈ Th,

and vF ∈ Pk (F)3 ∀F ∈ Fh }.

And for a fixed element T ∈ Th, the local space of discrete velocity unknowns is denoted
as follows

Uk
T ≔ {vT = ( (vT ) , (vF)F∈FT ) : vT ∈ Pk (T)3,

and vF ∈ Pk (F)3 ∀F ∈ FT }.

We define the global interpolation operator Ik
h : H1 (Ω)3 → Uk

h such that,

Ik
hv ≔ ( (𝝅k

Tv|T )T∈Th , (𝝅
k
Fv|F)F∈Fh ) ∀v ∈ H1 (Ω)3,

where 𝝅k
T , and 𝝅k

F are the polynomial L2-orthogonal projectors for cells and and faces,
respectively.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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The HHO Space
The HHO Space

We furnish Uk
h with the discrete H1-like seminorm such that, for all vh ∈ Uk

h,

‖vh ‖1,h ≔
©­«
∑︁
T∈Th

‖vT ‖
2
1,T

ª®¬
1
2

,

where, for all T ∈ Th,

‖vT ‖
2
1,T ≔ ‖∇vT ‖2

L2 (T )3×3 +
∑︁

F∈FT

h−1
F ‖vF − vT ‖2

L2 (F)3 .

The global spaces of discrete unknowns for the velocity and the pressure, respectively
accounting for the wall boundary condition and the zero-average condition, are

Uk
h,0 ≔

{
vh = ( (vT )T∈Th , (vF)F∈Fh ) ∈ Uk

h : vF = 0 ∀F ∈ Fb
h

}
,

Pk
h,0 ≔ Pk (Th) ∩ L2

0 (Ω) .

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Navier-Stokes Problem
Model: The Stationary Incompressible Navier-Stokes

Let Ω ⊂ R3 be an open, bounded, simply connected polyhedral domain with Lipschitz
boundary 𝜕Ω.
Given a body force f ∈ L2 (Ω)3. We consider the problem:
Find (u, p) ∈ H1

0 (Ω)
3 × L2

0 (Ω) such that

𝜈a(u, v) + t(u, u, v) + b(v, p) = ℓ (f, v) ∀v ∈ H1
0 (Ω)

3, (2.1a)

−b(u, q) = 0 ∀q ∈ L2 (Ω) , (2.1b)

where 𝜈 > 0 is the fluid viscosity, and

a(w, v) ≔
∫
Ω

∇w : ∇v, b(v, q) ≔ −
∫
Ω

(∇·v)q, ℓ (f, v) ≔
∫
Ω

f · v,

t(w, v, z) ≔
∫
Ω

(∇×w) × v · z.

Here p is the so-called Bernoulli pressure, and p = pkin + 1
2 |u |

2.
All technical details are in [CQ and Di Pietro 2020].
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Velocity Reconstruction

Velocity Reconstruction for Simplical Elements
Let an element simplical T ∈ Th be fixed. We define the local velocity reconstruction
operator Rk

T : Uk
T → RTNk (T) such that, for all vT ∈ Uk

T ,∫
T

Rk
TvT · w =

∫
T

vT · w, ∀w ∈ Pk−1 (T)3, (2.2a)

Rk
TvT · nTF = vF · nTF ∀F ∈ FT . (2.2b)

A global velocity reconstruction Rk
h : Uk

h,0 → RTNk (Th) is obtained patching the local
contributions.
The space RTNk (Th) has a continuous normal trace over each F ∈ Fh.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization

Pressure-Velocity Coupling
For the pressure-velocity coupling, we define the bilinear form bh : Uk

h,0 × P
k (Th) → R

such that
bh (vh, qh) ≔ −

∫
Ω

(∇·Rk
hvh) qh.

The bilinear form bh enjoys the following properties:
i) Consistency. It holds, for all v ∈ H1

0 (Ω)
3,

bh (Ik
hv, qh) = b(v, qh) ∀qh ∈ Pk (Th) . (2.3)

ii) Stability. It holds, for all qh ∈ Pk
h,

‖qh ‖L2 (Ω) . sup
vh∈Uk

h,0 ,‖vh ‖1,h=1
bh (vh, qh) . (2.4)

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization
Right Hand Side Discretization

We define ℓh : L2 (Ω)3 × Uk
h,0 → R the bilinear form such that,

ℓh (𝝓, vh) ≔
∫
Ω

𝝓 · Rk
hvh.

The bilinear lh form has the following properties:
i) Velocity invariance. For the Hodge decomposition of f = g + 𝜆∇𝜓, it holds

ℓh (f, vh) = ℓh (g + 𝜆∇𝜓, vh) = ℓh (g, vh) + bh (vh, 𝜆𝜋
k
h 𝜓) ∀vh ∈ Uk

h,0.

ii) Consistency. For all 𝝓 ∈ L2 (Ω)3 ∩ Hk (Th)3,

‖Eℓ,h (𝝓; ·) ‖1,h,∗ . hk+1 |𝝓 |Hk (Th )3 .

where the linear form Eℓ,h (𝝓; ·) : Uk
h → R representing the consistency error is

such that

Eℓ,h (𝝓; vh) ≔ ℓh (𝝓, vh) − ℓ (𝝓, vh)

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization
Convective Discretization

Usually when we perform the discretization error analysis, the discrete trilinear form
th ( ·, ·, ·) should be constructed to approximate the quantity

ℓh ( (∇×u) × u, zh) =
∫
Ω

(∇×u) × u · Rk
hzh for zh ∈ Uk

h,0, (2.5)

Recalling the integration by parts formula,∫
T
(∇×w) × v · z =

∫
T
∇wv · z −

∫
T
∇wz · v for w, z ∈ H1 (Ω)3,

we can reformulate (2.5) as follows:

ℓh ( (∇×w) × w, zh) =
∑︁
T∈Th

∫
T
(∇×w) × w · Rk

TzT

=
∑︁
T∈Th

∫
T

(
∇ww · Rk

TzT − ∇wRk
TzT · w

)

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization

Convective Discretization
Thus, we introduce the global trilinear form th : Uk

h × Uk
h × Uk

h → R such that

th (wh, vh, zh) ≔
∑︁
T∈Th

tT (wT , vT , zT ) ,

where, for any T ∈ Th, tT : Uk
T × Uk

T × Uk
T → R is defined as

tT (wT , vT , zT ) ≔
∫

T
G2(k+1)

T wTRk
TvT · Rk

TzT −
∫

T
G2(k+1)

T wTRk
TzT · Rk

TvT

The operator Gl
T : Uk

T → Pl (T)3×3 approximates the gradient operator ∇ in the HHO
space. See [Botti, Di Pietro, and Droniou 2019] for details.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization

Convective Discretization
Nevertheless, in the practical implementation one does not need to compute the gradient
reconstruction operators G2(k+1)

T to evaluate th. As a matter of fact, we have that

th (wh, vh, zh) =
∑︁
T∈Th

[∫
T
∇wTRk

TvT · Rk
TzT −

∫
T
∇wTRk

TzT · Rk
TvT

]
+
∑︁
T∈Th

∑︁
F∈FT

∫
F
(wF − wT ) · Rk

TzT

(
Rk

TvT · nTF
)

−
∑︁
T∈Th

∑︁
F∈FT

∫
F
(wF − wT ) · Rk

TvT

(
Rk

TzT · nTF
)
.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization
Convective Discretization

The trilinear form th has the following properties:
i) Non-dissipativity. For all wh, vh ∈ Uk

h, it holds that

th (wh, vh, vh) = 0.

ii) Boundedness. There exists a real number Ct > 0 independent of h (and, clearly,
also of 𝜈 and 𝜆) such that, for all wh, vh, zh ∈ Uk

h,

|th (wh, vh, zh) | ≤ Ct ‖wh ‖1,h ‖vh ‖1,h ‖zh ‖1,h.

iii) Consistency. It holds, for all w ∈ H1
0 (Ω)

3 ∩ Wk+1,4 (Th)3 and all zh ∈ Uk
h,

‖Et,h (w; ·) ‖1,h,∗ . hk+1 ‖w‖W1,4 (Ω)3 |w |Wk+1,4 (Th )3 ,

where the linear form Et,h (w; ·) : Uk
h → R is such that, for all zh ∈ Uk

h,

Et,h (w; zh) ≔ ℓh ( (∇×w) × w, zh) − th (Ik
hw, Ik

hw, zh) .

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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HHO Discretization

The Discrete Problem
The HHO discretization of the Navier-Stokes problem then reads:
Find (uh , ph) ∈ Uk

h,0 × Pk
h,0 such that

𝜈ah (uh , vh) + th (uh , uh , vh) + bh (vh , ph) = ℓh (f, vh) ∀vh ∈ Uh,0 , (2.6a)

−bh (uh , qh) = 0 ∀qh ∈ Pk (Th) . (2.6b)

Theorem (Convergence) [CQ and Di Pietro 2020]

For f ∈ L2 (Ω)3 with f = g + 𝜆∇𝜓, and assuming that it exists 𝛼 ∈ (0, 1) such that

‖g‖L2 (Ω)3 ≤ C𝛼𝜈2 . (2.7)

Let (u, p) ∈ H1
0 (Ω)

3 × L2
0 (Ω) be a solution to the Navier–Stokes equations, and (uh , ph) ∈ Uk

h × Pk
h be a solution to the

HHO scheme (2.6). Then, it holds:

‖uh − Ih
ku‖1,h ≤ Chk+1 (1 − 𝛼)−1

(
|u |Hk+2 (Th )3

+ 𝜈−1 ‖u‖W1,4 (Ω)3 |u |Wk+1,4 (Th )3

)

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Numerical Test
Application test 2D: Lid-Driven Cavity

Domain: [0, 1] × [0, 1]. BCs: u = (1, 0) at the top, and u = 0 at the other boundaries.
Body force f = 0.
Using polynomial aproximation: k = 5. Reynolds number Re = 𝜈−1.
Implementation using the HHO library SpaFEDTe (C++, created by Lorenzo Botti.)
Left: Re = 1, 000, and 32 × 32 grid. Right: Re = 5, 000, 32 × 32 grid.

(The rectangular grid is divived by triangles)

Velocity magnitude contours.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Numerical Test

Application test 2D: Lid-Driven Cavity
Comparison with reference solution [Erturk, Corke, and Gökçöl 2005] and [Ghia, Ghia,
and Shin 1982] for Re = 1, 000.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Numerical Test: Velocity Invariance
Application test 2D: Lid-Driven Cavity
To check the invariance property at the discete level:

We run the same test case for f = 𝜆∇𝜓 where 𝜓 = 1
3 (x

3 + y3) .
We use k = 1 and Re = 1, 000.
Comparison against the HHO-numerical method for NST proposed in [Botti, Di Pietro
and Droniou 2019].

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Current Work

Extension to Polytopal Meshes: Main Idea
Let an element T ∈ Th be fixed, and let 𝔗T any regular simplical subdivison of T .
We construct the new local velocity reconstruction operator Rk

T : Uk
T → RTNk (𝔗T )

solving local problems (small linear system over 𝔗T ).
[Kuznetsov and Repin 2003] -> To solve the classical Poisson problem using
mixed methods for the low order case k = 0.
[Frerichs and Merdon 2020]-> For arbritrary high order k ≥ 1 using the Virtual
Element Method to solve the Stokes eqs.

[CQ and Di Pietro 2021]-> Currently finishing the details for the Navier-Stokes eqs.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Future Work

Future Work in HHO with velocity invariance robustness
Non-Stationary Navier-Stokes eqs.
Non-newtonian flows.

Extend the HHO-method proposed in [Botti, CQ, Di Pietro and Harnist 2020].
Parallelize the code using MPI/PETSC/METIS such to be used in 3D and in real
applications.

D. Castanon Quiroz A HHO method for the incompressible Navier-Stokes
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Thank you

Thank you for your attention!
This presentation is availabe at my website: danielcq-math.github.io
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