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Outline

Outline
1 Intro to the Hybrid High Order (HHO) method

[Di Pietro, Ern, and Lemaire 2014] → First introduced
[Di Pietro and Droniou 2020] →An HHO Book with different Apps
[Cicuttin, Ern and Pignet 2021]→ An HHO Book with App. in Solid Mechanics

2 HHO methods for incompressible fluid flows
[CQ and Di Pietro 2020] → Pressure-robust Navier-Stokes formulation on
simplicial meshes
[CQ and Di Pietro 2023] → Pressure-robust stationary Navier-Stokes formulation
on polytopal meshes
[CQ and Di Pietro 2024] → Pressure-robust time-dependent Navier-Stokes
formulation on polytopal meshes
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Setting: Poisson

Let Ω ⊂ Rd , d ≥ 2, be an open connected polytopal Lipschitz domain
We focus on the Poisson problem: Given f : Ω → R, find u : Ω → R s.t.

−Δu = f in Ω,

u = 0 on 𝜕Ω

Let f ∈ L2 (Ω) . The usual weak formulation reads: Find u ∈ H1
0 (Ω) s.t.

a(u, v) ≔
∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω)

The well-posedness of this problem hinges on the Poincaré inequality

‖v‖L2 (Ω) ≤ CΩ ‖∇v‖L2 (Ω)d ∀v ∈ H1
0 (Ω)
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Poisson Problem.

Discretisation of Ω to Ωh
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HHO in a Nutshell

Hybrid High Order (HHO) in a nutshell
HHO methods attach discrete unknowns to mesh faces

one polynomial of order k ≥ 0 on each mesh face
HHO methods also use element unknowns

one polynomial of order k ≥ 0 on each mesh element
elimination by static condensation

Ex: Degrees of Freedom (DOFs) using HHO with hexagonal elements for the scalar case
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HHO Dofs

Let k ≥ 0 and define the local Hybrid High-Order (HHO) space

Vk
T ≔

{
vT = (vT , (vF)F∈FT ) : vT ∈ Pk (T) and vF ∈ Pk (F) for all F ∈ FT

}
Given a polytopal mesh Th of Ω, define the global HHO space

Vk
h ≔

{
vh = ( (vT )T∈Th , (vF)F∈Fh ) :

vT ∈ Pk (T) for all T ∈ Th and vF ∈ Pk (F) for all F ∈ Fh
}
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Discrete Poincaré inequality in HHO spaces I

We define on Vk
h the H1-like seminorm

‖vh ‖
2
1,h ≔

∑︁
T∈Th

‖vT ‖
2
1,T

where ‖vT ‖
2
1,T ≔ ‖∇vT ‖2

L2 (T )d + h−1
T

∑︁
F∈FT

‖vF − vT ‖2
L2 (F) for all T ∈ Th

Lemma (Discrete Poincaré inequality in HHO spaces)

Denote by Vk
h,0 the subspace of Vk

h with vanishing boundary values. For any vh ∈ Vk
h,0, letting

vh ∈ Pk (Th) be s.t. (vh) |T ≔ vT for all T ∈ Th,

‖vh ‖L2 (Ω) . ‖vh ‖1,h,

hence ‖ · ‖1,h is a norm on Vk
h,0.
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Discrete local operators
For k ≥ 0 we define the reconstruction operator rk+1

T : Vk
T → Pk+1 (T) s.t., for all

vT ∈ Vk
T ,∫

T
∇rk+1

T vT · ∇w = −
∫

T
vT Δw +

∑︁
F∈FT

∫
F

vF (∇w · nTF) ∀w ∈ Pk+1 (T) ,∫
T

rk+1
T vT =

∫
T

vT

We consider the following scheme:
Find uh ∈ Vk

h,0 s.t.

ah (uh, vh) ≔
∑︁
T∈Th

aT (uT , vT ) =
∫
Ω

fvh ∀vh ∈ Vk
h,0

where, for all T ∈ Th,

aT (uT , vT ) ≔
∫

T
∇rk+1

T uT · ∇rk+1
T vT + sT (uT , vT )

and the symmetric semi-definite stabilization bilinear form sT satisfies

‖vT ‖
2
1,T . aT (vT , vT ) . ‖vT ‖

2
1,T ∀vT ∈ Vk

T (ST1)
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Error analysis I

Let Ik
h : H1 (Ω) → Vk

h be the HHO interpolator s.t.

Ik
hv ≔ ( (𝜋Pk (T ) v)T∈Th , (𝜋Pk (F) v)F∈Fh ) ∀v ∈ H1 (Ω)

For estimating the error
eh ≔ uh − Ik

hu ∈ Vk
h,0

We define the consistency error Eh (u; vh) for all vh ∈ Vk
h,0 such that

Eh (u; vh) ≔
∫
Ω

fvh − ah (Ik
hu, vh)

We use the 3rd Strang Lemma (J. Droniou’s presentation):

‖uh − Ik
hu‖1,h ≤ sup

vh∈Vk
h,0\{0}

Eh (u; vh)
‖vh ‖1,h
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Error analysis II

Doing some algebra, we get

Eh (u; vh) =
∑︁

T∈Th

∫
T(((((((([

∇u − ∇rk+1
T (Ik

T u)
]
· ∇vT +

∑︁
T∈Th

∑︁
F∈FT

∫
F

[
∇u − (∇rk+1

T (Ik
T u) · nTF )

]
(vF − vT )︸                                                                    ︷︷                                                                    ︸

𝔗1

−
∑︁

T∈Th

sT (Ik
T u, vT )︸                   ︷︷                   ︸

𝔗2

Using Cauchy–Schwarz inequalities, definition of ‖ · ‖1,h , and optimal approximation properties of 𝜋Pk+1 (T ) we get

𝔗1 . hk+1 |u |Hk+2 (Th )
‖vh ‖1,h

To have 𝔗2 scale as 𝔗1 , we further assume polynomial consistency:

sT (Ik
T w, vT ) = 0 ∀(w, vT ) ∈ Pk+1 (T) × Vk

T (ST2)
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Error analysis III

And using again the optimal approximation properties of 𝜋Pk+1 (T ) , we get

𝔗2 . hk+1 |u |Hk+2 (Th )
‖vh ‖1,h

Theorem (Error estimate for the HHO scheme)

Denote by u ∈ H1
0 (Ω) the solution to the Poisson problem and by uh ∈ Vk

h its HHO approximation. Then, under (ST1)–(ST2),

and further assuming u ∈ Hk+2 (Th) , it holds

‖uh − Ik
hu‖1,h . hk+1 |u |Hk+2 (Th )

.

‖vT ‖2
1,T . aT (vT , vT ) . ‖vT ‖2

1,T ∀vT ∈ Vk
T (ST1)

sT (Ik
T w, vT ) = 0 ∀(w, vT ) ∈ Pk+1 (T) × Vk

T (ST2)
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The Stokes Problem

Let Ω ⊂ Rd , d ∈ {2, 3}, be an open, bounded, simply connected polytopal domain with
Lipschitz boundary 𝜕Ω

Given a body force f ∈ L2 (Ω)d . We consider the problem:

Find (u, p) ∈ H1
0 (Ω)

d × L2
0 (Ω)

d such that

𝜈a(u, v) + b(v, p) = ℓ (f , v) ∀v ∈ H1
0 (Ω)

d ,

−b(u, q) = 0 ∀q ∈ L2 (Ω)d ,

where 𝜈 > 0 is the fluid viscosity, and

a(w, v) ≔
∫
Ω

∇w : ∇v, b(v, q) ≔ −
∫
Ω

(∇·v)q, ℓ (f , v) ≔
∫
Ω

f · v
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Motivation: Robust Numerical Methods

We call a numerical method "pressure-robust" ([Linke 2014]) if the discretisation error of
the velocity is "independent of the pressure", i.e.,

‖uh − u‖L2 (Ω)d ≤ Chr ‖u‖Hs (Ω)d ,

where uh is the approximation of the solution u, h is the mesh size, C is a constant
independent of the pressure p, and r, s are positive integers

If f = ∇𝜙 for 𝜙 ∈ H1 (Ω) , then this body force is absorbed by the pressure gradient, not
by u
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Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R2

Time dependent problem.
The initial condition is constructed such that:

The vorticity ∇ × u is always constant
The field force is f = 0, and 𝜈 = 10−5

Periodic boundary conditions
Example/simulation taken from [Gauger et. al. 2019] and [Schroeder 2019]

Initial condition: u0 and its vorticity ∇ × u0
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Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R2

Vorticity ∇ × u at t = 0
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Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R2

Vorticity ∇ × u at t = 1.5
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Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in R2

Vorticity ∇ × u at t = 3
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The HHO Space

Objective

To design HHO discretization methods on general meshes for incompressible fluid problems

such that the velocity error estimates are independent from the pressure
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The HHO Space

The HHO Space
The global spaces of discrete unknowns for the velocity and the pressure, respectively
accounting for the wall boundary condition and the zero-average condition, are

Uk
h,0 ≔

{
vh = ( (vT )T∈Th , (vF)F∈Fh ) ∈ Uk

h : vF = 0 ∀F ∈ Fb
h

}
,

Pk
h,0 ≔ Pk (Th) ∩ L2

0 (Ω)
d
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Local Pressure-Velocity Coupling I

Let an element T ∈ Th be fixed. We define the local discrete divergence operator
Dk

T : Uk
T → Pk (T) as follows:

For vT ∈ Uk
T , Dk

TvT is such that, for all q ∈ Pk (T) ,

∫
T

Dk
TvTq = −

∫
T

vT · ∇q +
∑︁

F∈FT

∫
F

vF · nTFq

The operator Dk
T satisfies the commutating property

Dk
T Ik

Tv = 𝜋k
T (∇·v) ∀v ∈ H1 (T)d
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Local Pressure-Velocity Coupling II

For the pressure-velocity coupling, we define the bilinear form bh : Uk
h × Pk

h,0 (Th) → R
such that

bh (vh, qh) ≔
∑︁
T∈Th

∫
T
−(Dk

Tvh) qh

Stability. It holds, for all q ∈ Pk
h,0 (Th) ,

‖q‖L2 (Ω) . sup
vT ∈Uk

h,0 ,‖vh ‖1,h=1
bh (vh, qh)

21 / 37



Intro to HHO
HHO for incompressible fluid flow

Conclusion

Robustness with respect to pressure

The weak Stokes problem: Find (u, p) ∈ H1
0 (Ω)

d × L2
0 (Ω)

d such that

𝜈a(u, v) + b(v, p) = ℓ (f , v) ∀v ∈ H1
0 (Ω)

d ,

−b(u, q) = 0 ∀q ∈ L2 (Ω)d

To make it robust we approximate ℓ (f , v) by ℓh : L2 (Ω) × Uk
h → R the bilinear form is

ℓh (f , vh) ≔
∑︁
T∈Th

∫
T

f · Rk
TvT ,

where Rk
T : Uk

T → a conformal subspace of Hdiv (T) .
See [Di Pietro, Ern, Linke, and Schieweck 2016] → HHO robust method for the Stokes
problem using simplicial meshes
Need to extend the above method on polytopal meshes
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Velocity Reconstruction in Hdiv(T) I

Let an element T ∈ Th be fixed1, and let 𝔗T a regular simplicial subdivision of T
For 𝜏 ∈ 𝔗T , let RTNk (𝜏) the local Raviart–Thomas–Nédélec space of degree k
Restrictions on 𝔗T :

For k ≥ 2: All simplices in 𝔗T have at least one common vertex denoted as xT

Two examples of submeshes 𝔗T in R2 that satisfy the assumptions above:

xT

Figure: Pyramidal sub

xT

Figure:
Non-pyramidal sub

We denote as 𝜏 a simplicial element which belongs to 𝔗T , and as 𝜎 a face of 𝜏
The simplicial subdivision 𝔗T , is used to construct local operators for each mesh element
T , and will not modify the final size of the global system

1We assume T is star-shaped with respect to a ball.
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Velocity Reconstruction in Hdiv(T) II

We introduce the following space generated by the Koszul operator2:

G
c,k (T) ≔ (x − xT ) × Pk−1 (T)3 for k ≥ 1,

and define Gc,−1 (T) ≔ Gc,0 (T) ≔ {0}

Observe that we have the decomposition:

Pk (T)d = ∇Pk+1 (T) ⊕ G
c,k (T) ,

where the direct sum above is not orthogonal in general

2See [Di Pietro and Droniou 2021].
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Velocity Reconstruction in Hdiv(T) III

We define Rk
T : Uk

T → RTNk (𝔗T ) as the first component of the solution of the following
local problem:
Given vT ∈ Uk

T , find (Rk
TvT , 𝜓, 𝜽) ∈ RTNk (𝔗T ) × Pk (𝔗T ) × Gc,k−1 (T) such that

Rk
TvT · n𝜎 = (vF · nTF) |𝜎 ∀𝜎 ∈ 𝔉F , ∀F ∈ FT ,∫

T
(∇·Rk

TvT )𝜙 =

∫
T
(Dk

TvT )𝜙 ∀𝜙 ∈ Pk (𝔗T ) ,∫
T

Rk
TvT · 𝝃 =

∫
T

vT · 𝝃 ∀𝝃 ∈ G
c,k−1 (T) ,∫

T
Rk

TvT · 𝖜 +
∫

T
(∇·𝖜)𝜓 +

∫
T
𝖜 · 𝜽 =

∫
T

vT · 𝖜 ∀𝖜 ∈ RTNk
0 (𝔗T )

where FT are the faces of T , 𝔉F the subdivision of F, and RTNk
0 (𝔗T ) is the subspace of

RTN
k (𝔗T ) with vanishes ∀F ∈ FT

(Similar construction in [Frerichs and Merdon 2022] within the conformal VEM framework)
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Velocity Reconstruction in Hdiv(T) IV

Lemma (Properties of Rk
T ) [CQ and Di Pietro 2023]

The operator Rk
T has the following properties:

Well-posedness and boudedness. For a given vT ∈ Uk
T , there exists a unique element

Rk
TvT ∈ RTNk (𝔗T ) and it holds that

‖vT − Rk
TvT ‖L2 (T )3 . hT |vT |1,𝜕T

Approximation. For all v ∈ Hk+1 (T)d , we have the bound

‖v − Rk
T Ik

Tv‖L2 (T )3 . hk+1
T |v |Hk+1 (T )d

Consistency. For a given vT ∈ Uk
T , it holds, for k ≥ 1,

𝝅k−1
T (Rk

TvT ) = 𝝅k−1
T (vT )
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The HHO Scheme and the Error Estimate

The Discrete Problem
The HHO discretization of the Stokes problem then reads:
Find (uh, ph) ∈ Uk

h,0 × Pk
h such that

𝜈ah (uh, vh) + bh (vh, ph) = ℓh (f , vh) ∀vh ∈ Uh,0, (2.5a)

−bh (uh, qh) = 0 ∀qh ∈ Pk (Th) . (2.5b)

Theorem (Convergence) [CQ and Di Pietro 2023]

Let (u, p) ∈ H1
0 (Ω)

d × L2
0 (Ω) be a solution to the Stokes equations, and (uh, ph) ∈ Uk

h × Pk
h be

a solution to the HHO scheme (2.5). Then, it holds:

‖uh − Ih
ku‖1,h ≤ Chk+1 |u |Hk+2 (Th )d
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Extension to Navier–Stokes I
The Discrete Problem

Find (uh, ph) ∈ Uk
h,0 × Pk

h such that

𝜈ah (uh, vh) + th (uh, uh, vh) + bh (vh, ph) = ℓh (f , vh) ∀vh ∈ Uh,0, (2.6a)

−bh (uh, qh) = 0 ∀qh ∈ Pk (Th) (2.6b)

where

th (wh, vh, zh) =
∑︁
T∈Th

[∫
T
∇wTRk

TvT · Rk
T zT −

∫
T
∇wTRk

T zT · Rk
TvT

]
+
∑︁
T∈Th

∑︁
F∈FT

∫
F
(wF − wT ) · Rk

T zT

(
Rk

TvT · nTF
)

−
∑︁
T∈Th

∑︁
F∈FT

∫
F
(wF − wT ) · Rk

TvT

(
Rk

T zT · nTF
)

We use the key identity
∫
Ω
(∇ × u) × v · w =

∫
Ω
( (v · ∇)u) · w) − ( (w · ∇)u) · v)

The form th is non-dissipative, i.e., th (wh, vh, vh) = 0
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Extension to Navier–Stokes II

Theorem (Convergence) [CQ and Di Pietro 2023]

Let (u, p) ∈ H1
0 (Ω)

d × L2
0 (Ω) be a solution to the Navier–Stokes equations, and

(uh, ph) ∈ Uk
h × Pk

h be a solution to the HHO scheme (2.6). Then, it holds:

‖uh − Ih
ku‖1,h ≤ Chk+1

(
|u |Hk+2 (Th )d + 𝜈−1 ‖u‖W1,4 (Ω)d |u |Wk+1,4 (Th )d

)
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Numerical Test: Lid-Driven Cavity I

Domain: [0, 1] × [0, 1]. BCs: u = 0 at the walls, and u = (1, 0) at the top
Body force f = 0
Using Polynomial aproximation: k = 1. Reynolds number Re = 𝜈−1

Re = 1, 000
Using 3 different meshes:

Meshes (coarser version) used for the Lid-Driven Cavity
Number of DOFs after static condensation: Cartesian-58240, Hexa-339521,
Kershaw-246345
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Numerical Test: Lid-Driven Cavity II

Comparison with reference solution [Erturk, Corke, Gökçöl 2005] and [Ghia, Ghia, Shin
1982] for Re = 1, 000
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Numerical Test: Lid-Driven Cavity III
To check the robustness of the method we run the same test case for Re = 1, 000, but with
f = 𝜆∇𝜓, where 𝜓 = 1

3 (x
3 + y3)

Comparison against the original HHO formulation of [Botti, Di Pietro, and Droniou
2019]
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Conclusion

Pressure robustness for the time dependent Navier–Stokes problem: [CQ and Di Pietro
2024] to appear soon!

Getting pressure robustness without 𝔗T : Use a variational formulation where
u ∈ Hcurl(Ω)

See [Beirão da Veiga, Dassi, Di Pietro and Droniou 2022] for the Stokes problem
using the DDR/VEM frameworks

See [Di Pietro, Droniou and Qian 2024] for the Navier–Stokes problem using the
DDR framework

33 / 37



Intro to HHO
HHO for incompressible fluid flow

Conclusion

Thank you

Thank you for your attention!

You can download this presentation @ danielcq-math.github.io
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