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Outline

Outline
1 Motivation and Previous Projects

i) Geothermal energy.
ii) Simulation of geothermal systems.

2 Theoretical and Dicretization Frameworks
i) Two-phase reservoir model.
ii) Two-phase well model.
iii) The discrete nonlinear system.

3 Numerical Tests
i) Diphasic test case in a volcanic zone.

Ref: [Armandine Les Landes, CQ, Jeannin, Lopez, Masson 2021]
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Geothermal Energy

Exploitation of geothermal energy
Objective: To recover the heat naturally present underground and in
groundwater and use it as a source of energy.
Advantages:

Clean energy source.
Renewable energy.
Depth = heat!

Restrictions:
Local energy.
Reservoirs may become depleted/consumed as they are exploited.
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Geothermal Energy

Exploitation of geothermal energy- How geothermal energy is
produced?
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Geothermal Energy
Exploitation of geothermal energy

High-temperature geothermal energy (from 90 to 150°C) as in the Bouillante
power plant in Guadeloupe.

Energy production since 1986 when BRGM drilled the initial wells.
Currently supplying about 6% of electricity.
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Geothermal Energy

Exploitation of geothermal energy
Important to consider geology faults and fractures.
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Simulation of Geothermal Systems

Simulation of Geothermal Systems
The Code ComPASS.

Developed since 2012.
The ANR CHARMS project: BGRM, LJAD-Inria, Storengy, la Maison de la
Simulation and the Jacques Louis Lions lab.
First publication: [Xing, Masson, Lopez 2017].

The Lamentin bay, Martinique. Surface/faults map, and a mesh discretization using ComPASS:
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Simulation of Geothermal Systems

Simulation of Geothermal Systems
The Code ComPASS.

Co-developed and managed by BRGM.
Full industrial code:

Developed in layers using Fortran90 (core) ->C++/17 (wrappers) ->
Python3 (user level).
Updated daily using Git on Inria-GitLab.
Parallel code using MPI/PETSC/METIS...
Work environment using Docker.
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Simulation of Geothermal Systems

Simulation of Geothermal Systems
The Code ComPASS- A particular test case with wells.

One component (water-h2o), single-phase, one producer well, one producer
injection, and some fractures.
Test case from [Beaude et. al. 2018].
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Simulation of Geothermal Systems

First objective of the current project: Extend the model and its
implementation in ComPASS to two phases. In particular, liquid water and
vapor.
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Theoretical Framework

Model-Topology
Let Ω denote a bounded domain of R3 assumed to be polyhedral.
The fractures are represented as interfaces of codimension 1.

Example of a 2D domain with 3 intersecting fractures Γ1 , Γ2 , Γ3 . Example in 3D.
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Theoretical Framework
Model-H2O-Liquid (l) and vapor (g)

Unknowns: Pressure: pm. Temperature: Tm. Saturations: sl
m, sg

m.
The set of equations couples the mass, energy, volume balance equations and the
thermodynamic equilibrium in the matrix (subscript m):



𝜙m 𝜕t
( ∑︁
𝛼∈{ℓ,g}

𝜌𝛼 (pm, Tm)s𝛼m
)
+ div(qh2o

m ) = 0,

𝜙m 𝜕t
( ∑︁
𝛼∈{ℓ,g}

𝜌𝛼 (pm, Tm)e𝛼 (pm, Tm)s𝛼m
)
+ (1 − 𝜙m)𝜕tEr (pm, Tm) + div(qe

m) = 0,∑︁
𝛼∈{ℓ,g}

s𝛼m = 1,

pm = psat (Tm) if sl
m > 0 and sg

m > 0,
sg
m = 0 if pm > psat (Tm) ,

sl
m = 0 if pm < psat (Tm) ,

where 𝜙m: porosity, 𝜌𝛼: mass density, qh2o
m : mass flux, qe

m: energy flux, e: specific
internal energy, Er: rock energy density, and psat: the saturated pressure.
The mass flux qh2o

m computed using Darcy law.
The energy flux qe

m computed using convection and the Fourier law.
Similarly for fractures, i.e., Pressure pf . Temperature: Tf . . .
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Theoretical Framework

Model-H2O-Liquid (l) and vapor (g)
Simple example: Water column and heat transfer of energy by thermal convection.
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Discretization
Discretization: The VAG Scheme (Notation and DOFs)

Let M be the set of cells of the polyhedral mesh of Ω.
The set of faces of the mesh is F and FK is the set of faces of the cell K ∈ M.
The set of vertices of the mesh is V and V𝜎 is the set of vertices of the face 𝜎.
Let VK be the set of vertices of the cell K.
Let FΓ the set of fracture faces (the mesh is conforming w.r.t. the fracture network).
Degrees of Freedom (DOFs) of the VAG Scheme:

VD = {vK , vs, v𝜎 ∈ R, K ∈ M, s ∈ V , 𝜎 ∈ FΓ }.

VAG degrees of freedom uK , us , u𝜎 , us′ and VAG fluxes. Control volumes in the case of two cells K and L.

D. Castanon Quiroz A two-phase geothermal model with multi-branch wells



Introduction
Theoretical Model

Discretization and Numerical Tests

Discretization

Discretization of the multi-branch wells (Notation and general setting)
Let W denote the set of wells.
Each multi-branch well 𝜔 ∈ W is defined by a set of oriented edges of the mesh assumed
to define a rooted tree. It is assumed that V𝜔1 ∩ V𝜔2 = ∅ for any 𝜔1, 𝜔2 ∈ W.

Well geometric model.
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Discretization
Discretization of the multi-branch wells

Let 𝛼 ∈ {ℓ, g}, the set of well unknowns are:
At each node s ∈ V𝜔 by the well pressure p𝜔

s , the well temperature T𝜔
s and the

well saturations s𝛼s,𝜔 .
At each edge 𝔞 ∈ E𝜔 by the mass flow rates q𝛼

𝔞 .
These are complemented by the well total mass flow rates q𝛼

𝜔 which are non
negative for production wells and non positive for injection wells.

Multi-branch well 𝜔 with its root node s𝜔 , one edge 𝔞 = ss′
and the main physical quantities.
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Discretization

Discretization of the multi-branch wells
Assumptions:

The flow in the well is stationary at the reservoir time scale along with perfect
mixing and thermal equilibrium.
The Fourier fluxes and the wall friction are neglected and the pressure distribution
is assumed hydrostatic along the well.
Zero slip law: the velocity of the water vapor is the same as the one of water liquid
inside the well.
There are no cross flows, i.e, the flow goes in only one direction.
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Discretization

Discretization of the multi-branch wells (Notation and general setting)
For any a ∈ R, let us define a+ = max(a, 0) and a− = min(a, 0) . The mass flow rates
between the reservoir and the well 𝜔 at a given node s ∈ V𝜔 are defined as follows:

qr→𝜔
s,𝛼 = 𝛽

inj
𝜔

𝜌𝛼 (p𝜔
s , T𝜔

s )
𝜇𝛼 (p𝜔

s , T𝜔
s ) k𝛼r,s (s𝛼s,𝜔) (V𝜔

s )− + 𝛽
prod
𝜔

𝜌𝛼 (ps, Ts)
𝜇𝛼 (ps, Ts)

k𝛼r,s (s𝛼s ) (V𝜔
s )+,

qr→𝜔
s,h2o =

∑︁
𝛼∈{ℓ,g}

qr→𝜔
s,𝛼 ,

where 𝛽
prod
𝜔 , 𝛽

inj
𝜔 ∈ {0, 1}, V𝜔

s is the Darcy flux between the reservoir and the well at a
given well node s obtained using the Two Point Flux Approximation

V𝜔
s = WIs (ps − p𝜔

s ) ,

where ps is the reservoir pressure, and p𝜔
s is the well pressure at node s. WIs: Peaceman

well index.
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Discretization

Discretization of the multi-branch wells (Notation and general setting)
The energy flow rate is defined similarly by

qr→𝜔
s,e =

∑︁
𝛼∈{ℓ,g}

h𝛼 (p𝜔
s , T𝜔

s ) (qr→𝜔
s,𝛼 )− + h𝛼 (ps, Ts) (qr→𝜔

s,𝛼 )+,

where h𝛼 is the specific enthalpy. We have assumed the heat exchanges between the well
and the reservoir are dominated by thermal convection.

The well coefficients 𝛽inj
𝜔 and 𝛽

prod
𝜔 are used to impose specific well behavior:

For an injection well, we set 𝛽inj
𝜔 = 1 and 𝛽

prod
𝜔 = 0. And the mass flow rates

qr→𝜔
s,h2o are non positive.

For a production injection well, we set 𝛽inj
𝜔 = 0 and 𝛽

prod
𝜔 = 1. And the mass

flow rates qr→𝜔
s,h2o are non negative.
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Discretization

Recalling the equations in the reservoir for the model-H2O-Liquid (l) and vapor (g).
Unknowns: Pressure: pm. Temperature: Tm. Saturations: sl

m, sg
m.

The set of equations couples the mass, energy, volume balance equations and the
thermodynamic equilibrium in the matrix (subscript m):



𝜙m 𝜕t
( ∑︁
𝛼∈{ℓ,g}

𝜌𝛼 (pm, Tm)s𝛼m
)
+ div(qh2o

m ) = 0,

𝜙m 𝜕t
( ∑︁
𝛼∈{ℓ,g}

𝜌𝛼 (pm, Tm)e𝛼 (pm, Tm)s𝛼m
)
+ (1 − 𝜙m)𝜕tEr (pm, Tm) + div(qe

m) = 0,∑︁
𝛼∈{ℓ,g}

s𝛼m = 1,

pm = psat (Tm) if sl
m > 0 and sg

m > 0,
sg
m = 0 if pm > psat (Tm) ,

sl
m = 0 if pm < psat (Tm) ,

where 𝜙m: porosity, 𝜌m: mass density, qh2o
m : mass flux, qe

m: energy flux, e: specific
internal energy, Er: rock energy density, and psat: the saturated pressure.
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Discretization
Two-phase flow continuous model with one component H2O-Liquid (l) and vapor (g). No
slip, no friction, no Fourier fluxes. (Continuous Model without reservoir)



∑︁
𝛼∈{l,g}

div𝜏q𝛼 =
∑︁

s∈V𝜔

qr→𝜔
s,h2o 𝛿s,∑︁

𝛼∈{l,g}
div𝜏 (h𝛼 (p𝜔 , T𝜔)q𝛼) =

∑︁
s∈V𝜔

qr→𝜔
s,e 𝛿s,

sl
𝜔 + sg

𝜔 = 1,
p𝜔 = psat (T𝜔) if sl

𝜔 > 0 and sg
𝜔 > 0,

sg
𝜔 = 0 if p𝜔 > psat (T𝜔) ,

sl
𝜔 = 0 if p𝜔 < psat (T𝜔) ,

q𝛼 = S𝜔𝜌𝛼 (p𝜔 , T𝜔)s𝛼𝜔u𝛼 ,

∇𝜏p𝜔 = 𝜌 g𝜏 ,
𝜌 = 𝜌lsl

𝜔 + 𝜌gsg
𝜔 ,

ug = ul ,

where:
𝜏 is the spacial coordinate along the well, u𝛼 continuous phase velocity along the well.

𝛿s stands for the delta function at the well node s.
The fluxes with the reservoir are assumed to be concentrated at the well nodes.
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Discretization

Discretization of the multi-branch wells (General and discrete setting)
Defining the following each edge 𝔞 = ss′ ∈ E𝜔 , and each phase 𝛼:

The upwind approximations of the specific enthalpy, mass density, and
saturation:

h𝛼
𝔞 =

{
h𝛼 (p𝜔

s′ , T𝜔
s′ ) if q𝛼

𝔞 ≥ 0,
h𝛼 (p𝜔

s , T𝜔
s ) if q𝛼

𝔞 < 0.
𝜌𝛼
𝔞 =

{
𝜌𝛼 (p𝜔

s′ , T𝜔
s′ ) if q𝛼

𝔞 ≥ 0,
𝜌𝛼 (p𝜔

s , T𝜔
s ) if q𝛼

𝔞 < 0.

s𝛼𝔞 =

{
s𝛼s′,𝜔 if q𝛼

𝔞 ≥ 0,
s𝛼s,𝜔 if q𝛼

𝔞 < 0.

Let 𝜅𝔞,s′ = −1 and 𝜅𝔞,s = 1.
Let E𝜔

s ⊂ E𝜔 denote the set of well edges sharing the node s ∈ V𝜔 .
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Discretization

Discretization of the multi-branch wells (General setting and discrete setting)
The well equations account for the mass and energy conservations at each node of the
well combined with the volume balance and the thermodynamical equilibrium.
We have then the following for each well node s𝜔 ∈ V𝜔 :



qr→𝜔
s,h2o +

∑︁
𝔞∈E𝜔

s

∑︁
𝛼∈{ℓ,g}

𝜅𝔞,sq𝛼
𝔞 = 𝛿

s𝜔
s

∑︁
𝛼∈{ℓ,g}

q𝛼
𝜔 ,

qr→𝜔
s,e +

∑︁
𝔞∈E𝜔

s

∑︁
𝛼∈{ℓ,g}

𝜅𝔞,sh𝛼
𝔞 q𝛼

𝔞 = 𝛿
s𝜔
s

∑︁
𝛼∈{ℓ,g}

(
h̄𝛼
𝜔 (q𝛼

𝜔)− + h𝛼 (p𝜔
s , T𝜔

s ) (q𝛼
𝜔)+

)
,

sℓs,𝜔 + sg
s,𝜔 = 1,

p𝜔
s = psat (T𝜔

s ) if sg
s,𝜔 > 0 and sℓs,𝜔 > 0,

p𝜔
s ≥ psat (T𝜔

s ) if sg
s,𝜔 = 0, p𝜔

s ≤ psat (T𝜔
s ) if sℓs,𝜔 = 1,

where 𝛿 stands for the Kronecker symbol, psat is the saturated pressure, and h̄𝛼
𝜔 for

prescribed specific enthalpies in the case of injection wells.
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Discretization

Discretization of the multi-branch wells (General setting and discrete setting)
Inside the well, the hypothesis of hydrostatic pressure distribution implies that

p𝜔
s − p𝜔

s′ + 𝜌𝔞g(zs − zs′ ) = 0,

where for each edge ss′ = 𝔞 ∈ E𝜔 , where 𝜌𝔞 is the mass density of the liquid gas mixture.
The computation of 𝜌𝔞 is computed explicitly:

It is the variable liquid density for injectors: 𝜌𝔞 := 𝜌l
𝔞 (p

𝜔,n−1
s , T𝜔,n−1

s ) .
It is the variable mean density for producers:

𝜌𝔞 :=
∑︁

𝛼∈{ℓ,g}
s𝜔,n−1
s,𝜔 𝜌𝛼

𝔞 (p𝜔,n−1
s , T𝜔,n−1

s ) .

The well boundary conditions prescribe a limit total mass flow rate q̄𝜔 and a limit
bottom hole pressure p̄𝜔 . These will be different for injector and producer wells.
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Discretization

Liquid injection wells:

Here we have 𝛽
inj
𝜔 = 1, 𝛽prod

𝜔 = 0.
It is assumed that the injection is in liquid phase, i.e, that sℓs,𝜔 = 1, sg

s,𝜔 = 0.
The following are prescribed:

The minimum well total mass flow rate q̄𝜔 ≤ 0.
The well maximum bottom hole pressure p̄𝜔 .
The well specific liquid enthalpy h̄ℓ𝜔 .

Given the previous assumptions, and summing all fluxes eqs. =⇒ that the only implicit
unknown is pn

𝜔 = pn
s𝜔 per injection well.

The well equation at the current time step is defined by the following complementary
constraints (boundary conditions at the top):



( ∑︁
s∈V𝜔

qr→𝜔
s,h2o (p

n
s , pn

𝜔) − q̄𝜔

) (
p̄𝜔 − pn

𝜔

)
= 0,∑︁

s∈V𝜔

qr→𝜔
s,h2o (p

n
s , pn

𝜔) − q̄𝜔 ≥ 0,

p̄𝜔 − pn
𝜔 ≥ 0,
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Discretization

Production wells:
Here we have 𝛽

inj
𝜔 = 0, 𝛽prod

𝜔 = 1.
Completely two-phase production.
The following are prescribed:

The maximum well total mass flow rate q̄𝜔 ≥ 0.
The well minimum bottom hole pressure p̄𝜔 .

Given the previous assumptions, and summing all fluxes eqs. =⇒ that the only implicit
unknown is pn

𝜔 = pn
s𝜔 per production well.

The well equation at the current time step is defined by the following complementary
constraints (boundary conditions at the top):



(
q̄𝜔 −

∑︁
s∈V𝜔

qr→𝜔
s,h2o (p

n
s , Tn

s , sℓ,ns , sg,n
s , pn

𝜔)
) (

pn
𝜔 − p̄𝜔

)
= 0,

q̄𝜔 −
∑︁

s∈V𝜔

qr→𝜔
s,h2o (p

n
s , Tn

s , sℓ,ns , sg,n
s , pn

𝜔) ≥ 0,

pn
𝜔 − p̄𝜔 ≥ 0.
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Discretization

Non-Linear System I
For each 𝜈 ∈ M ∪ FΓ ∪ V the set of reservoir pressure, temperature, saturations and
mass fractions unknowns is denoted by X𝜈 =

(
P𝜈 , T𝜈 , sℓ𝜈 , sg

𝜈

)
We denote by XD , the set of reservoir unknowns

XD = {X𝜈 , 𝜈 ∈ M ∪ FΓ ∪ V},

The set of well bottom hole pressures is denoted by PW = {p𝜔 , 𝜔 ∈ W}.
The complete non-linear system is the following:

0 = R(XD , PW ) :=


Rs (XD , PW ) , s ∈ V ,

R𝜎 (XD ) , 𝜎 ∈ FΓ,
RK (XD ) , K ∈ M,

R𝜔 (XD , PW ) , 𝜔 ∈ W.
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Discretization
Non-Linear System II

The reservoir equations at each non-Dirichlet node s ∈ V

Rs,i (Xn
D , Pn

W ) :=
Ai,s (Xn

s ) − Ai,s (Xn−1
s )

Δtn
+

∑︁
𝜎∈FΓ,s

−qi
𝜎,s (Xn

D ) +
∑︁

K∈Ms

−qi
K,s (X

n
D )

+
∑︁

𝜔∈W|s∈V𝜔

qr→𝜔
s,i (Xn

s , p𝜔,n
s ) = 0,

where Rs,i, i ∈ {h2o, e}.
The well equations:

For the injection wells 𝜔 ∈ Winj:

R𝜔 (Xn
D , Pn

W ) := −min(
∑︁

s∈V𝜔

qr→𝜔
s,h2o (X

n
s , pn

𝜔) − q̄𝜔 , p̄𝜔 − pn
𝜔) = 0.

For the production wells 𝜔 ∈ Wprod :

R𝜔 (Xn
D , Pn

W ) := min(q̄𝜔 −
∑︁

s∈V𝜔

qr→𝜔
s,h2o (X

n
s , pn

𝜔) , pn
𝜔 − p̄𝜔) = 0.
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Numerical Test

Numerical test: Diphasic vertical well
We consider the domain Ω = (−H, H)2 × (0, Hz) where H = 1000 m and Hz = 200 m.

We set one vertical producer well of radius r𝜔 = 0.1 m, defined by the line {(x, y, z) ∈ Ω | x = y = 0}.
The simulation consists in two stages. At the first one we have:

Dirichlet-BDC at the top, prescribing the pressure and the saturated temperature as a function of this pressure.
Liquid phase in the whole domain.
Neumann-BDC at the bottom and at the sides of the domain.
At this stage the well is in closed state, i.e., nothing is produced.
Simulation runs for 10 years.

Pressure at the end of the first stage of simulation (reservoir).
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Numerical Test

Numerical test: Diphasic vertical well
At the second stage we have:

Dirichlet-BDC prescribing the pressure and temperature at the sides equal to the ones obtained previously.
Neumann-BDC at the top and at the bottom of the domain.
At this stage the well is in open state, i.e., it can produce.
Simulation runs for 30 days.

Gas Saturation cell values at the end of the simulation (domain cut at the origin).
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Numerical Test

Numerical test: Diphasic vertical well
At the second stage:

Gas Saturation at the end of the simulation (closer look).

Total CPU-runtime: 6 hrs with 32 procs.
Number of cells: 1,848,320. Number of nodes: 1,896,129.
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Numerical Test

Numerical test: Diphasic vertical well
Computation over the sequences of meshes {h1, h2, h3, h4 }.
Convergence Test:
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Figure: Total gas volume inside the well.
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Figure: Temperature along the well.

Ref: [Armandine Les Landes, CQ, Jeannin, Lopez, Masson 2021]
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Numerical Test

Numerical test case: Doublet.
Application test case: Inspired from real geological data of the region of Bouillante,
Guadeloupe.
A doublet: One injector - One producer.
One fault.

Figure: Geometry: The reservoir and the fracture.
Figure: Mesh. One producer (green)/ one injector (blue).
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Numerical Test
Numerical test case: Doublet.

The simulation consists in two stages. At the first one we have:
Dirichlet-BDC at the top, prescribing the pressure and the saturated temperature
as a function of this pressure.
Neumann-BDC at the bottom and at the sides of the domain.
At this stage the wells are in closed state.
Simulation runs for 105 years.

Figure: Temperature at the end of the first stage of simulation (reservoir and fault).
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Numerical Test

Numerical test case: Doublet.
At the second stage we have:

Dirichlet-BDC prescribing the pressure and temperature at the sides equal to the
ones obtained previously.
Neumann-BDC at the top and at the bottom of the domain.
At this stage only the producer well is in open state, i.e., it can produce.
After 5 years the injector well is open, i.e., it injects water.

Figure: Temperature and gas saturation (in yellow)
on the fault after 5 years.

Figure: Temperature and gas saturation (in yellow)
on the fault after 10 years.
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Ongoing and future work

Ongoing work
Implementing and testing a more complete model:

Cross flows, Fourier fluxes and a non-trivial slip-law:



∑︁
𝛼∈{l,g}

div𝜏q𝛼 =
∑︁

s∈V𝜔

qr→𝜔
s,h2o 𝛿s, i ∈ C,∑︁

𝛼∈{l,g}
div𝜏 (h𝛼 (p𝜔 , T𝜔)q𝛼) + div𝜏 (−𝜆S𝜔∇𝜏T𝜔) =

∑︁
s∈V𝜔

qr→𝜔
s,e 𝛿s,

sl
𝜔 + sg

𝜔 = 1,
p𝜔 = psat (T𝜔) if sl

𝜔 > 0 and sg
𝜔 > 0,

sg
𝜔 = 0 if p𝜔 > psat (T𝜔) ,

sl
𝜔 = 0 if p𝜔 < psat (T𝜔) ,

q𝛼 = S𝜔𝜌𝛼 (p𝜔 , T𝜔)s𝛼𝜔u𝛼 ,

∇𝜏p𝜔 = Tf + 𝜌 g𝜏 ,
𝜌 = 𝜌lsl

𝜔 + 𝜌gsg
𝜔 ,

ug − ul = Φ(um, 𝜌g, 𝜌l , r𝜔 , 𝜃𝜔 , ...) .
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