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Outline

Outline
1 Motivation.
The generalized Stokes problem.
2 The Hybrid High Order (HHO) method in a nutshell.

[Di Pietro, Ern, and Lemaire 2014] — First introduced.
[Di Pietro and Droniou 2020] —An HHO Book with different Apps.
[Cicuttin, Ern and Pignet 2021]— An HHO Book with App. in Solid Mechanics.

3 HHO for the generalized Stokes and Navier-Stokes eqs.

[Botti et. al. 2021] — The generalized Stokes problem.
[CQ, Di Pietro and Harnist 2023] — The generalized Navier-Stokes problem.
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Introduction

The Generalized Stokes Problem

Model: The stationary generalized Stokes problem.
@ LetQ c R? d € {2,3}, be an open, bounded, simply connected polygonal/polyhedral
domain with Lipschitz boundary 9Q.
@ Given a volumetric force field f : Q@ — R?, we consider the following: Find the velocity
field u : Q — RY, and the pressure field p : @ — R such that

-V.o(-,Vsu)+VGp=f inQ, (1.1a)
Vu=0 inQ, (1.1b)
u=0 on 0Q, (1.1¢c)
/p(x)dx:O, (1.1d)
Q

where V- denotes the divergence operator, Vy is the symmetric part of the gradient
operator V, and o : Q X R;M — R;W is the strain rate-shear stress law (denoting by
R‘Zx‘i the set of square, symmetric, real-valued d X d matrices).
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Introduction

The Generalized Stokes Problem

Strain rate-shear stress law.
@ We define the Frobenius inner product such that, for all T = (7)1 <; j<q and
n = (17)1<ij<d in RAxd . = Z?le 7;1;j, and we denote by |7 |4xq the
corresponding norm.
@ For fixed r € (1, +0), we denote by ' := ﬁ € (1, +o0) the conjugate of r, and define
the singular exponent of r by

7=min(r,2) € (1,2]. (1.2)
@ We assume the strain rate-shear o (x, T) law satisfies:
o (x,0) = 0 for almost every x € Q. (1.3a)

@ We assume the strain rate-shear law satisfies the Holder continuity property:

r—

lo(x,7) =0 (X, 1) lgxg < Ohe (O—der + |T|‘r1><d + |’7|2><d)T I _nls;}p (1.3b)

and the strong monotonicity property: W
2 XX

(@) —o@n): =) (ga"+ g+ M) 7 2 ocmir -l (3¢imas

<
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Introduction

The Generalized Stokes Problem

Strain rate-shear stress law—Example.

The (u, 8, a, r)-Carreau—Yasuda fluids (see [Yasuda et. al. 1981] and [Hirn 2013]), for
almosteveryx € Qandallt € R‘Six‘i,

=2
(6,7 = (o) (89 4 ) (1.4)

where p and a are (measurable) positive functions from Q — R*, § € [0, +00) is the
degeneracy parameter, and r € (1, +o0) is the flow behavior index.

The Carreau—Yasuda law is a generalization of the Carreau law (corresponding to

a_ = a; = 2) that takes into account the different local levels of flow behavior in the fluid.
The degenerate case ¢ = 0 corresponds to the power-law model.

For the (u, &, a, r)-Carreau—Yasuda model:

@ If r > 2 is called dilatant (shear thickening). Example: sand.
@ If r < 2is called pseudoplastic (shear thinning). Example: blood.
@ If r = 2, we have a Newtonian fluid. kkkk
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Introduction

The Generalized Stokes Problem

Weak formulation.

@ Letting U = {v e W (Q,RY) : Voo = 0} and

Pi= L (QR) = {q el (QR) : /Qq:O}.

@ Assuming f € L’ (2, RY), find (u, p) € U x P such that

a(u,v)+b(v,p):/f-v Vv eU,
Q
~b(u,q) =0 ¥q € P,

where a : UX U — R,and b : U X r’ (2, R) — R are defined as follows

a(w,v) = /Qa'(~, Vsw) : Vg, b(v,q) = —'/Q(Vv)q.

(1.52)

(1.5b)
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Introduction

The Generalized Stokes Problem

A priori estimate.

@ Using the properties of o (x, T) such as the Holder continuity and the strong
monotonicity properties, and the following Korn inequality valid for allv € U,

”vllwl,r(Q’Rd) < ||v5v||Lr(Q’RdXd)’ (1-7)

we have well-posedness of the weak problem, and that

1 1
— —1 7 - -7
el o) < (Tl @pay) ™ + (03 Tl @za)) ™ - (1)
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HHO Discretization

Motivation: Polytopal Meshes

@ Motivation: Discretisation of Q to €y,.

ISR
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HHO Discretization

Motivation: Polytopal Meshes

But why polytopal/polyhedral?
@ Need a numerical scheme less sensitive to the mesh quality.
@ Reduce time to generate meshes by use of automatic meshing tools.

@ Handle complex geometries: distorted meshes are usual.

Bare bundle:

cut of a mesh

Courtesy of Jérdme Bonelle (EDF-Paris).

\

iimas
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HHO Discretization

Motivation

But why polytopal/polyhedral?

a8
il

Non-conforming meshes.
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HHO Discretization

HHO in a Nutshell

The HHO in a nutshell

@ The HHO method attaches discrete unknowns to the mesh faces.
@ one polynomial of order k > 0 on each mesh face.
@ HHO methods also use cell unknowns:

@ one polynomial of order k > 0 on each mesh cell.

@ But they are usually eliminated in the global system using static condensation
(local Schur complement).

@ HHO methods are skeletal methods.

k=20 k=1 k=2

Ex: Degrees of Freedom (DOFs) for the scalar case using the HHO with hexagonal cells. kkkk‘

ima
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HHO Discretization

HHO in a Nutshell

Advantages of HHO

@ General meshes are supported
@ polygonal/polyhedral cells, hanging nodes.
@ Physical fidelity

@ local conservation of physical quantities.
@ robustness.

@ Attractive computational costs
@ global system size: k> x (#faces) (after performing static condensation).
@ Genericity

@ construction independent of space dimension.
@ open-source HHO libraries on Github:

@ HArDCore: by Jérome Droniou for the HHO Book.
@ Code_Saturne: by EDF-France.

@ Disk++: by Matteo Cicuttin. kkkk
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HHO Discretization

HHO in a Nutshell

@ Bridging HHO with other mehods for the Poisson Problem:

[Cockburn, Ern and Di Pietro 2016] — Bridging HHO and the Hybridizable
Discontinuous Galerkin (HDG).

@ The HHO method can be formulated as a HDG method with a particular
numerical flux §, and spaces Vj,, Wy, and M.

@ With HHO we get a H'-like norm error which decays as O(h**!), and a L2-error
which decays as O(hF+?).
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HHO Discretization

HHO in a Nutshell

The HHO in a nutshell

@ The HHO method attaches discrete unknowns to the mesh faces.
@ one polynomial of order k > 0 on each mesh face.
@ HHO methods also use cell unknowns:

@ one polynomial of order k > 0 on each mesh cell.

@ But they are usually eliminated in the global system using static condensation
(local Schur complement).

@ HHO methods are skeletal methods.

k=20 k=1 k=2

Ex: Degrees of Freedom (DOFs) for the scalar case using the HHO with hexagonal cells. kkkk‘

ima
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HHO Discretization

The HHO Space

The HHO Space

@ Let a polynomial degree k > 1 be fixed. We define the global space of discrete velocity
unknowns:

U = {v,, = ((vD)res;» (VP)pes;) 1 v € PX(T) VT € T,
and vp € PK(F) VF € 7).

@ We define the global interpolation operator !Z :whl(Q,RY) — gﬁ such that,
Ly = (@) viress (xpvipeer,)  ¥v e WH(QRY),

where 7rkT, and JTI;, are the L2-orthogonal projectors over cells and faces, respectively.
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HHO Discretization

The HHO Space

The HHO Space
@ We furnish g’; with the discrete the W' (Q, RY)-like strain seminorm ||- || ».» such that,
forally, € g'}i,

¥

1l = | D5 vzl 7|

TeTy,
where, forall T € 7y,

roo._ r 1-r r
I I g = NV, sy + D5 0 E =92l -
FeFr

@ The global spaces of discrete unknowns for the velocity and the pressure, respectively
accounting for the wall boundary condition and the zero-average condition, are

Ul = {v, = ((D)rery, (vpper) €Ul ive =0 VF e 7P},

P} o =P (T;) N P.

@ We have the following discrete Korn inequality ([Botti er. al. 2021]) for all v, € Q];l 0" W

\)
r r < r " T
||vh||L"(£l,lR‘1) + |vh|W1~’(‘7/_,,1R‘1) b ”KhHr,h' (2.1?Imas
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HHO Discretization

The Discrete Operators

Viscous term

@ Forall T € 7, we define the local symmetric gradient reconstruction operator
G]; T g’; — PX(T, R) such that, for all y; € g’;,

/TG.I;,TKT T =/TstT T+ Z ‘/F(VF—VT) - (tngr) vr € PY(T, R, (2.2)

Fefr

@ Forally € Wl'l(T, Rd),
Gi p(Ipv) = 7 (Vo). (2.3)

@ The global symmetric gradient reconstruction operator Gf ne Qﬁ — PF(7, R®D) is

obtained patching the local contributions, that is, for all v, € g’;L,

Gy =Gy, VT e, 24
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HHO Discretization

The Discrete Operators

Viscous term

@ The discrete function aj, : g’,; X g’;l — Ris such that, for all v, w, € g’;l,

4 (W, v,) = [)U("Gls(,hmh) :Glsc,hzh +ysn (W, v), 2.3)

where y € [Osm, O ].
@ With the stabilization function s, : glg X EZ — Ris such that, for ally,, w; € g’;

1wy 2,) = D sr(wr, ). 2.6)
TeTy,
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HHO Discretization

The Discrete Operators

Viscous term
@ The local contribution sz : g’; X Q’} — R must satisfy the following properties:

Stability and boundedness. Recalling the definition of the local ||- ||, 7-seminorm, for all
vr € Q’} it holds:

”G’sC,TKTHZr(T’Rdxd) +s7(vpvp) = llvrll g (2.72)
Polynomial consistency. For allw € phtl (T, Rd) and all v, € Q’;,
sr(liw,v,) = 0. (2.7b)

Holder continuity. For all uy, vy, wr € Q’}, it holds, setting ey == uy; —wy,

[ =1 1
Is7(up,vp) = st(wr,vp)| < (s7(up up) +s7(wpwp)) 7 srlep,ep) 7 st(vp,vp) 7.
(2.7¢)
Strong monotonicity.

2-F r2-F

(s7(up, er) = st (wp,ep)) (s7(up, up) +s7(wr, wp)) 7 2 srler.ep) 7

@274 imas
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HHO Discretization

Local Pressure-Velocity Coupling

Local Pressure-Velocity Coupling
@ Letanelement T € 7, be fixed. We define the discrete divergence operator
D’} : Qi. — PK(T,R) as follows:
For a given local collection of velocities v, € Ql;, D’.‘rgT is such that, for all
q € PK(T,R),

'/TD];XT‘ZZ/T(V'VT)(I‘*' Z ./F(VF_VT) “N7Fq. (2.8a)

Fefr

@ We define the global bilinear form by, : Qﬁ 0 X P’; (71) — R such that

@ Stability. It holds, for all g € PK(7;),

llg ”Lr/ (Q.R) S sup b, (Xh’ qn)- (29

k
vreUy oLlvg =1 o
75,0715 iimas
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HHO Discretization

The Discrete Problem

The Discrete Problem
@ The discrete problem reads: Find (u;,, ps) € Q;‘l o X P’;l such that

an(uy,,v,) +b,(vy,, pp) = /Qf-Vh vy, GQ’,‘,,O,

— by (. q1) =0 Vay € PS.

(2.10a)

(2.10b)
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HHO Discretization

The Discrete Problem

The Discrete Problem

@ The discrete problem is well-posed and satisfy the usual a priori estimates ([Botti et. al.
2021]):

@ We have the following error estimates for r < 2:

llu, — Lully < KD OD NG,

_1)2
llpn — n,’;pnu, @n) S RO D2 N

@ Additionaly, we have the following error estimates for r > 2:

ket l
”li/, _!ﬁu”r,h < hr-1 No’,u,pa

k kel
llpn = nhp”[‘r’(Q’R) S hrl No',u,p~

——
5
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a
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Numerical Test and the NST-Problem

Numerical Test

Application test 2D: Lid-Driven Cavity
@ Domain: [0, 1] x [0, 1]. BCs: u = 0 at the walls, and u = (1, 0) at the top.

Setting the body force f = 0.

r=2

Using the (1, 0, 1, r)-Carreau-Yasuda law: o (x,7) = |7|/ 7,

Using Polynomial aproximation: k = 5.

Using a Cartesian (128x128) mesh.

r=2 r=125 r=225 kkkk
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Numerical Test and the NST-Problem

Extension to Navier-Stokes Problem

Model: The convective Stokes problem.
@ LetQcRYde {2, 3}, be an open, bounded, simply connected polyhedral domain with
Lipschitz boundary 9Q.

@ Given a volumetric force field f : Q@ — R?, we consider the following: Find the velocity
field u : Q — RY, and the pressure field p : Q — R such that

-Vo(,Vsu)+ (u-V)x(-,u)+Vp=f inQ, (3.1a)
Vu=0 in Q, (3.1b)
u=0 on 9Q, 3.1c)
fp(x)dx:O, (3.1d)
Q
where y : Q x RY — R? is the convection law. kkkk
iimas
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Numerical Test and the NST-Problem

The Navier Stokes Problem

The Convection law.

@ We define ® as the tensor product such that, for all x = (x;)1<j<q € R4 and
¥=0Pigcd €ERLx®Yy = (xiy)i<ijca € R
@ Letareal number s € (1, o) be fixed. We assume the convection law satisfies

X (x,0) = 0 for almost every x € Q. (3.2a)

We also assume that, for all w € RY, the non-dissipativity relations hold:

R e

wex(,w) =x(,w) ew. (3.2¢)

Moreover, there exists a real number y. € (0, co) such that, for all v, w € R4 and almost
every x € Q, the following Holder continuity property holds:

Y

55 -
L Ge,w) = x (e, )| < xne (W + 1) S w—v [, (3.2
iimas

where 3 := min(53, 2).
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Numerical Test and the NST-Problem

The Navier Stokes Problem

Example of a Convection Law.
@ s-Laplace convection law ([Lei and Jian-Guo 2018]):

X x,w) = |w|2w, (3.3)

where s € (1, co) is the convection behaviour index.
@ Taking s = 2 we have the standard convection law.
The HHO Method.

@ The details of HHO discretization for the NST-Problem can be found in [CQ, Di Pietro
and Harnist 2023]:

@ Compactness convergence analysis with minimal regularity.
@ A priori error estimates.
@ Numerical tests: Lid Driven Cavity test.

——
5
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a
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Numerical Test and the NST-Problem

Numerical Test

Application test 2D: Lid-Driven Cavity
@ Domain: [0, 1] x [0, 1]. BCs: u = 0 at the walls, and u = (1, 0) at the top.
@ Setting the body force f = 0.

@ Using the (u, 1, r, r)-Carreau—Yasuda law: o (x,7) = g (r + |7 |gxa
convection law, and Re = 1000.

)"2 7, the standard

@ Using Polynomial aproximation: k = 3.

@ Using a Cartesian (32x32) mesh.

r=1.5

=
5

§:
a
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Numerical Test and the NST-Problem

Thank you

Thank you for your attention!

§:
a
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Numerical Test and the NST-Problem
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